Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight...Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight as the build-up structure,and finite element models(FEMs)of these two panels are established.Experimental results of build-up panels agree well with the FEM results with the nonliearity and the large deformation,so FEMs are validated.FEM calculation results of these two panels indicate that the failure mode of the integral panel is different from that of the build-up panel,and the failure load increases by 18.4% up to post-buckling.Furthermore,the integral structure is optimized by using the multi-island genetic algorithm and the sequential quadratic programming.Compared with the initial design,the optimal mass is reduced by 8.7% and the strength is unchanged.展开更多
Cavitating jet is a promising drilling rate improvement technology in both the marine natural gas hydrate (NGH) fluidization exploitation method and the integrated radial jet drilling and completion method. In present...Cavitating jet is a promising drilling rate improvement technology in both the marine natural gas hydrate (NGH) fluidization exploitation method and the integrated radial jet drilling and completion method. In present study, we aim to improve the efficiency of jet erosion and extracting NGH. With a computational fluid dynamics (CFD) method, the pressure, velocity and cavitation field characteristics of organ-pipe cavitating jet (OPCJ) are analysed. The divergent angle, throat length, and divergent length of OPCJ nozzle are preferred to obtain stronger jet cavitation erosion effect. Laboratory experiments of gas hydrate-bearing sediments (GHBS) erosion by OPCJ and conical jet (CJ) are conducted to compare and validate the jet erosion performance. The impinging models of OPCJ and CJ are constructed to study the impact characteristics. Results show that the preferred values of divergent angle, throat length, and divergent length are 15°, 1d, and 3d, respectively, in present simulation conditions. For GHBS, the OPCJ possesses the advantages of high efficiency and low energy consumption. Moreover, the OPCJ has higher penetration efficiency, while showing equivalent penetration ability compared to CJ. During the impinging process, the OPCJ can induce stronger impact pressure and turbulence effect, and also shows stronger chambering effect and bottom cleaning ability compared to CJ. This study presents the erosion performance of OPCJ and CJ on GHBS, and provides preliminary insights on the potential field applications in NGH exploitation.展开更多
Flow characteristics, such as flow pattern, gas holdup, and bubble size distribution, in an internal loop reactor with external liquid circulation, are simulated to investigate the influence of reactor internals by us...Flow characteristics, such as flow pattern, gas holdup, and bubble size distribution, in an internal loop reactor with external liquid circulation, are simulated to investigate the influence of reactor internals by using the computational fluid dynamics (CFD)-population balance equations (PBE) coupled model. Numerical results reveal that introducing a downcomer tube and a draft tube can help to improve the mass and heat transfer of the reactor through enhanced liquid circulation, increased gas holdup and reduced bubble diameter. The hydrodynamic behavior in the internal loop reactor with external liquid circulation can be managed effectively by adjusting the diameter and axial position of the draft tube.展开更多
A gas-phase surface discharge(GSD)was employed to optimize the discharge reactor structure and investigate the dye degradation.A dye mixture of methylene blue,acid orange and methyl orange was used as a model pollut...A gas-phase surface discharge(GSD)was employed to optimize the discharge reactor structure and investigate the dye degradation.A dye mixture of methylene blue,acid orange and methyl orange was used as a model pollutant.The results indicated that the reactor structure of the GSD system with the ratio of tube inner surface area and volume of 2.48,screw pitch between a high-voltage electrode of 9.7 mm,high-voltage electrode wire diameter of 0.8 mm,dielectric tube thickness of2.0 mm and tube inner diameter of 16.13 mm presented a better ozone(O_3)generation efficiency.Furthermore,a larger screw pitch and smaller wire diameter enhanced the O_3generation.After the dye mixture degradation by the optimized GSD system,73.21%and 50.74%of the chemical oxygen demand(COD)and total organic carbon removal rate were achieved within 20 min,respectively,and the biochemical oxygen demand(BOD)and biodegradability(BOD/COD)improved.展开更多
A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load bearing wheel for the first time. Based on load bearing wheel dimensions, material properties and operatin...A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load bearing wheel for the first time. Based on load bearing wheel dimensions, material properties and operating conditions, the structure of wheel flange is optimized by zero order finite element method. A detailed three dimensional finite element model of flange of load bearing wheel is developed and utilized to optimize structure of wheel flange. Its service life, which is affected by flange structure parameter, is analyzed by comparing the optimization results with those of prototype of wheel. The results of optimization are presented and the stress field of load bearing wheel in optimal dimension obtained by using finite element analysis method is demonstrated. The finite element analysis and optimization results show that the CPUE load bearing wheel is feasible and suitable for the tracked vehicle and has a guiding value in practice of the weighting design of the whole tracked vehicle.展开更多
Blades are important parts of rotating machinery such as marine gas turbines and wind turbines,which are exposed to harsh environments during mechanical operations,including centrifugal loads,aerodynamic forces,or hig...Blades are important parts of rotating machinery such as marine gas turbines and wind turbines,which are exposed to harsh environments during mechanical operations,including centrifugal loads,aerodynamic forces,or high temperatures.These demanding working conditions considerably influence the dynamic performance of blades.Therefore,because of the challenges posed by blades in complex working environments,in-depth research and optimization are necessary to ensure that blades can operate safely and efficiently,thus guaranteeing the reliability and performance of mechanical systems.Focusing on the vibration analysis of blades in rotating machinery,this paper conducts a comprehensive literature review on the research advancements in vibration modeling and structural optimization of blades under complex operational conditions.First,the paper outlines the development of several modeling theories for rotating blades,including one-dimensional beam theory,two-dimensional plate-shell theory,and three-dimensional solid theory.Second,the research progress in the vibrational analysis of blades under aerodynamic loads,thermal environments,and crack factors is separately discussed.Finally,the developments in rotating blade structural optimization are presented from material optimization and shape optimization perspectives.The methodology and theory of analyzing and optimizing blade vibration characteristics under multifactorial operating conditions are comprehensively outlined,aiming to assist future researchers in proposing more effective and practical approaches for the vibration analysis and optimization of blades.展开更多
The detailed atomic structure of quasicrystals has been an open problem for decades. Here we present a quasilattiee-conserved optimization method (quasi-OPT), under particular quasiperiodic boundary conditions. As t...The detailed atomic structure of quasicrystals has been an open problem for decades. Here we present a quasilattiee-conserved optimization method (quasi-OPT), under particular quasiperiodic boundary conditions. As the atomic coordinates are described by basic cells and quasilattices, we are able to maintain the self-similarity characteristics of qusicrystals with the atomic structure of the boundary region updated timely following the relaxing region. Exemplified with the study of decagonal Al-Co-Ni (d-Al-Co-Ni), we propose a more stable atomic structure model based on Penrose quasilattice and our quasi-OPT simulations. In particular, rectangle-triangle ruIes are suggested for the local atomic structures of d-Al-Co-Ni quasicrystals.展开更多
Based on the seamless integration of broadband optical and wireless access networks,millimeter-wave Radio over Fiber (RoF) technology is considered to be a promising solution for the next generation access networks wh...Based on the seamless integration of broadband optical and wireless access networks,millimeter-wave Radio over Fiber (RoF) technology is considered to be a promising solution for the next generation access networks which will provide high capacity and flexibility with low cost.But due to its large cost to realize,the system architecture needs to be optimized.In the millimeter-wave optical generation part,optical heterodyning method can be introduced to generate a high-frequency millimeter-wave signal using a low-frequency signal source.And the system efficiency can be greatly improved based on injection-locking of a semiconductor laser.In the downlink,the transmission distance can be greatly enhanced using single-sideband modulation.And the single-mode modulation (single-sideband modulation) based on an injection-locked semiconductor laser is a much simpler solution.In the uplink,direct modulation of optical heterodyning signal can be used to realize the down-conversion of uplink millimeter-wave signal,which simplifies the receiver structure at the centre office.In the wavelength division multiplexing millimeter-wave RoF duplex system,the wavelength reuse in both downlink and uplink can save the wavelength resource in the whole system,which improves its efficiency.展开更多
The ground-state energy level (GEL) and electron distribution of GaAs pseudomorphic high-electron-mobility transistors (PHEMTs) are analyzed by a self-consistent solution to the Schrodinger-Poisson equations. The ...The ground-state energy level (GEL) and electron distribution of GaAs pseudomorphic high-electron-mobility transistors (PHEMTs) are analyzed by a self-consistent solution to the Schrodinger-Poisson equations. The indium composition and thickness of the InGaAs channel are optimized according to the GEL position. The GEL position is not in direct proportion to 1/d^2 (d is the channel thickness) by considering the influence of electron distribution in the InGaAs channel. Indium composition 0.22 and channel thickness 9 nm are obtained by considering the mismatch between InGaAs and AlGaAs. Several PHEMT samples are grown according to the theoretical results and mobility 6300 cm^2 /V.s is achieved.展开更多
For complicated geometries, it is ineflicient to integrate over the entire domain. A new approach for optimization is presented here, based on sensitivity analysis of local do- main and deformation of full domain. Acc...For complicated geometries, it is ineflicient to integrate over the entire domain. A new approach for optimization is presented here, based on sensitivity analysis of local do- main and deformation of full domain. Accurate results of design sensitivity analysis are ob- tained with this approach in shape optimization. This method is shown to be efficient when used in optimization programs and results in less distortion of the mesh.展开更多
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str...Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.展开更多
The research of LEFP(linear explosive forming projectile)is of great value to the development of new warhead due to its excellent performance.To further improve the damage ability of the shaped charge warhead,a specia...The research of LEFP(linear explosive forming projectile)is of great value to the development of new warhead due to its excellent performance.To further improve the damage ability of the shaped charge warhead,a special shell overhanging structure was designed to increase the charge based on the traditional spherical charge,in which case the crushing energy of LEFP could be guaranteed.LS-DYNA was used to simulate different charge structures obtained by changing the number of detonation points,the length of shell platform,the radius of curvature and the thickness of liner.The RSM(response surface model)between the molding parameters of LEFP and the structural parameters of charge was established.Based on RSM model,the structure of shaped charge was optimized by using multi-objective genetic algorithm.Meanwhile,the formation process of jet was analyzed by pulsed X-ray photography.The results show that the velocity,length-diameter ratio and specific kinetic energy of the LEFP were closely related to the structural parameters of the shaped charge.After the optimization of charge structure,the forming effect and penetration ability of LEPP had been significantly improved.The experimental data of jet velocity and length were consistent with the numerical results,which verifies the reliability of the numerical results.展开更多
In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an importan...In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an important role.Calculated according to statics and relevant contents,the structure had the same total volume as the traditional segmented structure,but had shorter length,wider width and greater height.Those prevented the structure from stress or deformation failure.Some reinforcing ribs with enough moments of inertia were welded in the external shell.Because of the one-piece structure,this refuge chamber reduced the risk of sealing which was a serious problem of segmented structure.Impact load with 300 ms duration and0.6 MPa over-pressure was settled.Explicit nonlinear dynamic analysis program was used to simulate the response of the refuge chamber.The maximum stress and the maximum displacement were obtained.The refuge chamber including blast airtight doors could meet the rigidity requirement.Weak parts of the chamber were the front and back end shell where bigger displacement values occurred than others.Thus,the calculation indicated that the refuge chamber could meet structural safety requirements.Based on the numerical analysis,suggestions were put forward for further resistance ability improvement.Only large inclined shaft with larger wellhead was suitable for this one-piece coal mine mobile refuge chamber.展开更多
A novel palletizing robot is presented and developed.By using the Newton-Euler method and the principle that the instantaneous inertial force system could be transformed into a static system,the force equilibrium equa...A novel palletizing robot is presented and developed.By using the Newton-Euler method and the principle that the instantaneous inertial force system could be transformed into a static system,the force equilibrium equations of the whole robot and its subsystem were derived and the robot's dynamic models were established.After that,an example simulation was performed by using Matlab software and the structural optimization of the robot's key parts were discussed and analyzed in ANSYS platform.The results show that the dynamic models are correct and can be helpful for the design,validation and kinetic control based on dynamics of this kind of palletizing robots.展开更多
Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative mat...Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.展开更多
The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wing...The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wings.The sensitivity information of wing spanwise stiffness distribution with respect to the twist angle at wing tip,the vertical displacement at wing tip,and the flutter speed are obtained using a sensitivity method for both models.Then the relationship between stiffness distribution and aeroelastic performance is summarized to guide the design procedure.By using the genetic/sensitivity-based hybrid algorithm,an optimal solution satisfying the strength,aeroelastic and manufacturing constraints is obtained.It is found that the summarized guidance is well consistent with the optimal solution,thus providing a valuable design advice with efficiency.The study also shows that the aeroelastic-optimization-based global stiffness design procedure can obtain the optimal solution under multiple constraints with high efficiency and precision,thereby having a strong application value in engineering.展开更多
In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general effic...In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (〉 500), the small rewiring probability (≈0.02) and the small average connection probability (〈 0.1). Many previous research results support our results.展开更多
The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross...The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross-section is designed for plasma elongating. Horizontal and vertical ports are designed for diagnosing, vacuum pumping, plasma heating and plasma current driving, etc. The vacuum vessel consists of 16 segments. It will be baked out at 250℃ to obtain a clean wall. When the machine is in operation, both the hot wall (the wall temperature is around 100℃) and the cold wall (wall temperature is in normal equilibrium) are considered. The stress caused by thermal deformation and the electromagnetic (EM) loads caused by 1.5 MA plasma disruption in 3.5 T magnetic field have to be taken into account in the design of the HT-7U vacuum vessel Finite element method was employed for structure analysis of the vacuum vessel.展开更多
Spin effect of the small diameter shaped charge results in the centrifugal stress during the jet stretching process. Consequently, the jet scatters, which deceases the jet penetration capability. In the present study,...Spin effect of the small diameter shaped charge results in the centrifugal stress during the jet stretching process. Consequently, the jet scatters, which deceases the jet penetration capability. In the present study, a multi-section method was proposed to design the spin-compensation liner. The spincompensation rate(SCR) of the liner was defined as the specific angular velocity that a fluted liner can offset. Based on the plain stress theory, SPH numerical method was applied to study the converging process of the 2D fluted structure. The spin-compensation mechanism of the fluted structure was illustrated. Then, nine cross sections were chosen along the liner axis equidistantly. On each of the section, a 2D fluted structure was designed to offset a given initial angular velocity. After, the optimized fluted structures were integrated into a 3D fluted liner. Jet appearances of the normal liner and the fluted liners under different initial angular velocities were compared, which verifies the practicality of the multi-sectional method. The multi-section optimization method provides a new efficient method of designing the shaped charge liner for a specific usage.展开更多
This paper presents a new type of double-helical rotor wave energy converter(WEC),which consists of two isolated sets of helical rotor structures(inner and outer).This device can generate electricity by using the risi...This paper presents a new type of double-helical rotor wave energy converter(WEC),which consists of two isolated sets of helical rotor structures(inner and outer).This device can generate electricity by using the rising and falling energy of a wave.The rotors are simulated and optimized by Fluent.Each rotor’s blades are simulated and analyzed,which are separately changed in terms of helix angle,shape,and thickness.The simulation result shows that,for both inner and outer helical rotors,the energy harvesting efficiency is the highest when the blade helix angle is 45°.Triangular blades have better hydrodynamic performance than square and circular blades.The energy harvesting efficiency of 15 mm thick blades is higher than that of 75 mm thick blades.展开更多
文摘Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight as the build-up structure,and finite element models(FEMs)of these two panels are established.Experimental results of build-up panels agree well with the FEM results with the nonliearity and the large deformation,so FEMs are validated.FEM calculation results of these two panels indicate that the failure mode of the integral panel is different from that of the build-up panel,and the failure load increases by 18.4% up to post-buckling.Furthermore,the integral structure is optimized by using the multi-island genetic algorithm and the sequential quadratic programming.Compared with the initial design,the optimal mass is reduced by 8.7% and the strength is unchanged.
基金financially supported by National Natural Science Foundation of China(No.52174009 and No.51827804)Marine Economy Development Foundation of Guangdong Province(GDNRC[2022]44)“Technical Support for Stimulation and Testing of Gas Hydrate Reservoirs”.
文摘Cavitating jet is a promising drilling rate improvement technology in both the marine natural gas hydrate (NGH) fluidization exploitation method and the integrated radial jet drilling and completion method. In present study, we aim to improve the efficiency of jet erosion and extracting NGH. With a computational fluid dynamics (CFD) method, the pressure, velocity and cavitation field characteristics of organ-pipe cavitating jet (OPCJ) are analysed. The divergent angle, throat length, and divergent length of OPCJ nozzle are preferred to obtain stronger jet cavitation erosion effect. Laboratory experiments of gas hydrate-bearing sediments (GHBS) erosion by OPCJ and conical jet (CJ) are conducted to compare and validate the jet erosion performance. The impinging models of OPCJ and CJ are constructed to study the impact characteristics. Results show that the preferred values of divergent angle, throat length, and divergent length are 15°, 1d, and 3d, respectively, in present simulation conditions. For GHBS, the OPCJ possesses the advantages of high efficiency and low energy consumption. Moreover, the OPCJ has higher penetration efficiency, while showing equivalent penetration ability compared to CJ. During the impinging process, the OPCJ can induce stronger impact pressure and turbulence effect, and also shows stronger chambering effect and bottom cleaning ability compared to CJ. This study presents the erosion performance of OPCJ and CJ on GHBS, and provides preliminary insights on the potential field applications in NGH exploitation.
基金Financial support from the Central Universities (12QN02)National Natural Science Foundation of China (51025624and 51076043)111 Project (B12034)
文摘Flow characteristics, such as flow pattern, gas holdup, and bubble size distribution, in an internal loop reactor with external liquid circulation, are simulated to investigate the influence of reactor internals by using the computational fluid dynamics (CFD)-population balance equations (PBE) coupled model. Numerical results reveal that introducing a downcomer tube and a draft tube can help to improve the mass and heat transfer of the reactor through enhanced liquid circulation, increased gas holdup and reduced bubble diameter. The hydrodynamic behavior in the internal loop reactor with external liquid circulation can be managed effectively by adjusting the diameter and axial position of the draft tube.
基金National Natural Science Foundation of China(No.51477025)
文摘A gas-phase surface discharge(GSD)was employed to optimize the discharge reactor structure and investigate the dye degradation.A dye mixture of methylene blue,acid orange and methyl orange was used as a model pollutant.The results indicated that the reactor structure of the GSD system with the ratio of tube inner surface area and volume of 2.48,screw pitch between a high-voltage electrode of 9.7 mm,high-voltage electrode wire diameter of 0.8 mm,dielectric tube thickness of2.0 mm and tube inner diameter of 16.13 mm presented a better ozone(O_3)generation efficiency.Furthermore,a larger screw pitch and smaller wire diameter enhanced the O_3generation.After the dye mixture degradation by the optimized GSD system,73.21%and 50.74%of the chemical oxygen demand(COD)and total organic carbon removal rate were achieved within 20 min,respectively,and the biochemical oxygen demand(BOD)and biodegradability(BOD/COD)improved.
文摘A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load bearing wheel for the first time. Based on load bearing wheel dimensions, material properties and operating conditions, the structure of wheel flange is optimized by zero order finite element method. A detailed three dimensional finite element model of flange of load bearing wheel is developed and utilized to optimize structure of wheel flange. Its service life, which is affected by flange structure parameter, is analyzed by comparing the optimization results with those of prototype of wheel. The results of optimization are presented and the stress field of load bearing wheel in optimal dimension obtained by using finite element analysis method is demonstrated. The finite element analysis and optimization results show that the CPUE load bearing wheel is feasible and suitable for the tracked vehicle and has a guiding value in practice of the weighting design of the whole tracked vehicle.
基金Supported by the National Natural Science Foundation of China under Grant No.52271309Natural Science Foundation of Heilongjiang Province of China under Grant No.YQ2022E104.
文摘Blades are important parts of rotating machinery such as marine gas turbines and wind turbines,which are exposed to harsh environments during mechanical operations,including centrifugal loads,aerodynamic forces,or high temperatures.These demanding working conditions considerably influence the dynamic performance of blades.Therefore,because of the challenges posed by blades in complex working environments,in-depth research and optimization are necessary to ensure that blades can operate safely and efficiently,thus guaranteeing the reliability and performance of mechanical systems.Focusing on the vibration analysis of blades in rotating machinery,this paper conducts a comprehensive literature review on the research advancements in vibration modeling and structural optimization of blades under complex operational conditions.First,the paper outlines the development of several modeling theories for rotating blades,including one-dimensional beam theory,two-dimensional plate-shell theory,and three-dimensional solid theory.Second,the research progress in the vibrational analysis of blades under aerodynamic loads,thermal environments,and crack factors is separately discussed.Finally,the developments in rotating blade structural optimization are presented from material optimization and shape optimization perspectives.The methodology and theory of analyzing and optimizing blade vibration characteristics under multifactorial operating conditions are comprehensively outlined,aiming to assist future researchers in proposing more effective and practical approaches for the vibration analysis and optimization of blades.
基金Supported by the National Natural Science Foundation of China under Grant No 11174082
文摘The detailed atomic structure of quasicrystals has been an open problem for decades. Here we present a quasilattiee-conserved optimization method (quasi-OPT), under particular quasiperiodic boundary conditions. As the atomic coordinates are described by basic cells and quasilattices, we are able to maintain the self-similarity characteristics of qusicrystals with the atomic structure of the boundary region updated timely following the relaxing region. Exemplified with the study of decagonal Al-Co-Ni (d-Al-Co-Ni), we propose a more stable atomic structure model based on Penrose quasilattice and our quasi-OPT simulations. In particular, rectangle-triangle ruIes are suggested for the local atomic structures of d-Al-Co-Ni quasicrystals.
基金funded by the National Natural Science Foundation of China under Grant No.60736003by National High Technology Research and Development Program of China("863 program")under Grant No.2006AA01Z261
文摘Based on the seamless integration of broadband optical and wireless access networks,millimeter-wave Radio over Fiber (RoF) technology is considered to be a promising solution for the next generation access networks which will provide high capacity and flexibility with low cost.But due to its large cost to realize,the system architecture needs to be optimized.In the millimeter-wave optical generation part,optical heterodyning method can be introduced to generate a high-frequency millimeter-wave signal using a low-frequency signal source.And the system efficiency can be greatly improved based on injection-locking of a semiconductor laser.In the downlink,the transmission distance can be greatly enhanced using single-sideband modulation.And the single-mode modulation (single-sideband modulation) based on an injection-locked semiconductor laser is a much simpler solution.In the uplink,direct modulation of optical heterodyning signal can be used to realize the down-conversion of uplink millimeter-wave signal,which simplifies the receiver structure at the centre office.In the wavelength division multiplexing millimeter-wave RoF duplex system,the wavelength reuse in both downlink and uplink can save the wavelength resource in the whole system,which improves its efficiency.
文摘The ground-state energy level (GEL) and electron distribution of GaAs pseudomorphic high-electron-mobility transistors (PHEMTs) are analyzed by a self-consistent solution to the Schrodinger-Poisson equations. The indium composition and thickness of the InGaAs channel are optimized according to the GEL position. The GEL position is not in direct proportion to 1/d^2 (d is the channel thickness) by considering the influence of electron distribution in the InGaAs channel. Indium composition 0.22 and channel thickness 9 nm are obtained by considering the mismatch between InGaAs and AlGaAs. Several PHEMT samples are grown according to the theoretical results and mobility 6300 cm^2 /V.s is achieved.
文摘For complicated geometries, it is ineflicient to integrate over the entire domain. A new approach for optimization is presented here, based on sensitivity analysis of local do- main and deformation of full domain. Accurate results of design sensitivity analysis are ob- tained with this approach in shape optimization. This method is shown to be efficient when used in optimization programs and results in less distortion of the mesh.
文摘Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.
基金supported by the National Natural Science Foundation of China(Grant No.11772061)。
文摘The research of LEFP(linear explosive forming projectile)is of great value to the development of new warhead due to its excellent performance.To further improve the damage ability of the shaped charge warhead,a special shell overhanging structure was designed to increase the charge based on the traditional spherical charge,in which case the crushing energy of LEFP could be guaranteed.LS-DYNA was used to simulate different charge structures obtained by changing the number of detonation points,the length of shell platform,the radius of curvature and the thickness of liner.The RSM(response surface model)between the molding parameters of LEFP and the structural parameters of charge was established.Based on RSM model,the structure of shaped charge was optimized by using multi-objective genetic algorithm.Meanwhile,the formation process of jet was analyzed by pulsed X-ray photography.The results show that the velocity,length-diameter ratio and specific kinetic energy of the LEFP were closely related to the structural parameters of the shaped charge.After the optimization of charge structure,the forming effect and penetration ability of LEPP had been significantly improved.The experimental data of jet velocity and length were consistent with the numerical results,which verifies the reliability of the numerical results.
基金Supported by the Major State Basic Research Development Program of China(973Project)(2011CB706900)
文摘In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an important role.Calculated according to statics and relevant contents,the structure had the same total volume as the traditional segmented structure,but had shorter length,wider width and greater height.Those prevented the structure from stress or deformation failure.Some reinforcing ribs with enough moments of inertia were welded in the external shell.Because of the one-piece structure,this refuge chamber reduced the risk of sealing which was a serious problem of segmented structure.Impact load with 300 ms duration and0.6 MPa over-pressure was settled.Explicit nonlinear dynamic analysis program was used to simulate the response of the refuge chamber.The maximum stress and the maximum displacement were obtained.The refuge chamber including blast airtight doors could meet the rigidity requirement.Weak parts of the chamber were the front and back end shell where bigger displacement values occurred than others.Thus,the calculation indicated that the refuge chamber could meet structural safety requirements.Based on the numerical analysis,suggestions were put forward for further resistance ability improvement.Only large inclined shaft with larger wellhead was suitable for this one-piece coal mine mobile refuge chamber.
基金Sponsored by the National Natural Science Foundation of China (50675109)
文摘A novel palletizing robot is presented and developed.By using the Newton-Euler method and the principle that the instantaneous inertial force system could be transformed into a static system,the force equilibrium equations of the whole robot and its subsystem were derived and the robot's dynamic models were established.After that,an example simulation was performed by using Matlab software and the structural optimization of the robot's key parts were discussed and analyzed in ANSYS platform.The results show that the dynamic models are correct and can be helpful for the design,validation and kinetic control based on dynamics of this kind of palletizing robots.
文摘Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body.
基金supported by the National Natural Science Foundation of China (Nos.11302011,11372023, 11172025)
文摘The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wings.The sensitivity information of wing spanwise stiffness distribution with respect to the twist angle at wing tip,the vertical displacement at wing tip,and the flutter speed are obtained using a sensitivity method for both models.Then the relationship between stiffness distribution and aeroelastic performance is summarized to guide the design procedure.By using the genetic/sensitivity-based hybrid algorithm,an optimal solution satisfying the strength,aeroelastic and manufacturing constraints is obtained.It is found that the summarized guidance is well consistent with the optimal solution,thus providing a valuable design advice with efficiency.The study also shows that the aeroelastic-optimization-based global stiffness design procedure can obtain the optimal solution under multiple constraints with high efficiency and precision,thereby having a strong application value in engineering.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61101117,61171099,and 61362008)the National Key Scientific and Technological Project of China (Grant No.2012ZX03004005002)+1 种基金the Fundamental Research Funds for the Central Universities,China (Grant No.BUPT2012RC0112)the Natural Science Foundation of Jiangxi Province,China (Grant No.20132BAB201018)
文摘In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (〉 500), the small rewiring probability (≈0.02) and the small average connection probability (〈 0.1). Many previous research results support our results.
文摘The vacuum vessel of the HT-7U superconducting tokamak will be a fully-welded structure with a double-wall. The space between the double-wall will be filled with borated water for neutron shielding. Non-circular cross-section is designed for plasma elongating. Horizontal and vertical ports are designed for diagnosing, vacuum pumping, plasma heating and plasma current driving, etc. The vacuum vessel consists of 16 segments. It will be baked out at 250℃ to obtain a clean wall. When the machine is in operation, both the hot wall (the wall temperature is around 100℃) and the cold wall (wall temperature is in normal equilibrium) are considered. The stress caused by thermal deformation and the electromagnetic (EM) loads caused by 1.5 MA plasma disruption in 3.5 T magnetic field have to be taken into account in the design of the HT-7U vacuum vessel Finite element method was employed for structure analysis of the vacuum vessel.
基金supported by the project of National Natural Science Foundation of China (NSFC, Grant No. 12032006)。
文摘Spin effect of the small diameter shaped charge results in the centrifugal stress during the jet stretching process. Consequently, the jet scatters, which deceases the jet penetration capability. In the present study, a multi-section method was proposed to design the spin-compensation liner. The spincompensation rate(SCR) of the liner was defined as the specific angular velocity that a fluted liner can offset. Based on the plain stress theory, SPH numerical method was applied to study the converging process of the 2D fluted structure. The spin-compensation mechanism of the fluted structure was illustrated. Then, nine cross sections were chosen along the liner axis equidistantly. On each of the section, a 2D fluted structure was designed to offset a given initial angular velocity. After, the optimized fluted structures were integrated into a 3D fluted liner. Jet appearances of the normal liner and the fluted liners under different initial angular velocities were compared, which verifies the practicality of the multi-sectional method. The multi-section optimization method provides a new efficient method of designing the shaped charge liner for a specific usage.
基金Supported by the National Key Research and Development Program of China(2019YFB1504402).
文摘This paper presents a new type of double-helical rotor wave energy converter(WEC),which consists of two isolated sets of helical rotor structures(inner and outer).This device can generate electricity by using the rising and falling energy of a wave.The rotors are simulated and optimized by Fluent.Each rotor’s blades are simulated and analyzed,which are separately changed in terms of helix angle,shape,and thickness.The simulation result shows that,for both inner and outer helical rotors,the energy harvesting efficiency is the highest when the blade helix angle is 45°.Triangular blades have better hydrodynamic performance than square and circular blades.The energy harvesting efficiency of 15 mm thick blades is higher than that of 75 mm thick blades.