A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static...A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.展开更多
Markov random fields(MRF) have potential for predicting and simulating petroleum reservoir facies more accurately from sample data such as logging, core data and seismic data because they can incorporate interclass re...Markov random fields(MRF) have potential for predicting and simulating petroleum reservoir facies more accurately from sample data such as logging, core data and seismic data because they can incorporate interclass relationships. While, many relative studies were based on Markov chain, not MRF, and using Markov chain model for 3D reservoir stochastic simulation has always been the difficulty in reservoir stochastic simulation. MRF was proposed to simulate type variables(for example lithofacies) in this work. Firstly, a Gibbs distribution was proposed to characterize reservoir heterogeneity for building 3-D(three-dimensional) MRF. Secondly, maximum likelihood approaches of model parameters on well data and training image were considered. Compared with the simulation results of MC(Markov chain), the MRF can better reflect the spatial distribution characteristics of sand body.展开更多
Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network cap...Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.展开更多
The goal of this research is to develop an emergency disaster relief mobilization tool that determines the mobilization levels of commodities, medical service and helicopters (which will be utilized as the primary me...The goal of this research is to develop an emergency disaster relief mobilization tool that determines the mobilization levels of commodities, medical service and helicopters (which will be utilized as the primary means of transport in a mountain region struck by a devastating earthquake) at pointed temporary facilities, including helicopter-based delivery plans for commodities and evacuation plans for critical population, in which relief demands are considered as uncertain. The proposed mobilization model is a two-stage stochastic mixed integer program with two objectives: maximizing the expected fill rate and minimizing the total expenditure of the mobilization campaign. Scenario decomposition based heuristic algorithms are also developed according to the structure of the proposed model. The computational results of a numerical example, which is constructed from the scenarios of the Great Wenchuan Earthquake, indicate that the model can provide valuable decision support for the mobilization of post-earthquake relief, and the proposed algorithms also have high efficiency in computation.展开更多
Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mo...Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.展开更多
基金Projects(51804113,51434006,51874130)supported by the National Natural Science Foundation of ChinaProject(E51768)supported by the Doctoral Initiation Foundation of Hunan University of Science and Technology,China+1 种基金Project(E61610)supported by the Postdoctoral Research Foundation of Hunan University of Science and Technology,ChinaProject(E21734)supported by the Open Foundation of Work Safety Key Lab on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines,China
文摘A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.
基金Project(2011ZX05002-005-006)supported by the National "Twelveth Five Year" Science and Technology Major Research Program,China
文摘Markov random fields(MRF) have potential for predicting and simulating petroleum reservoir facies more accurately from sample data such as logging, core data and seismic data because they can incorporate interclass relationships. While, many relative studies were based on Markov chain, not MRF, and using Markov chain model for 3D reservoir stochastic simulation has always been the difficulty in reservoir stochastic simulation. MRF was proposed to simulate type variables(for example lithofacies) in this work. Firstly, a Gibbs distribution was proposed to characterize reservoir heterogeneity for building 3-D(three-dimensional) MRF. Secondly, maximum likelihood approaches of model parameters on well data and training image were considered. Compared with the simulation results of MC(Markov chain), the MRF can better reflect the spatial distribution characteristics of sand body.
基金Projects(51378119,51578150)supported by the National Natural Science Foundation of China
文摘Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.
基金supported by the National Natural Science Foundation of China 71371181 91024006China Postdoctoral Science Foundation (2012M521918)
文摘The goal of this research is to develop an emergency disaster relief mobilization tool that determines the mobilization levels of commodities, medical service and helicopters (which will be utilized as the primary means of transport in a mountain region struck by a devastating earthquake) at pointed temporary facilities, including helicopter-based delivery plans for commodities and evacuation plans for critical population, in which relief demands are considered as uncertain. The proposed mobilization model is a two-stage stochastic mixed integer program with two objectives: maximizing the expected fill rate and minimizing the total expenditure of the mobilization campaign. Scenario decomposition based heuristic algorithms are also developed according to the structure of the proposed model. The computational results of a numerical example, which is constructed from the scenarios of the Great Wenchuan Earthquake, indicate that the model can provide valuable decision support for the mobilization of post-earthquake relief, and the proposed algorithms also have high efficiency in computation.
基金Projects(51021004,51379141)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘Methodology for the reliability analysis of hydraulic gravity dam is the key technology in current hydropower construction.Reliability analysis for the dynamical dam safety should be divided into two phases:failure mode identification and the calculation of the failure probability.Both of them are studied based on the mathematical statistics and structure reliability theory considering two kinds of uncertainty characters(earthquake variability and material randomness).Firstly,failure mode identification method is established based on the dynamical limit state system and verified through example of Koyna Dam so that the statistical law of progressive failure process in dam body are revealed; Secondly,for the calculation of the failure probability,mathematical model and formula are established according to the characteristics of gravity dam,which include three levels,that is element failure,path failure and system failure.A case study is presented to show the practical application of theoretical method and results of these methods.