In the practical slope engineering,the stability of lower sliding mass(region A)with back tensile cracks of the jointed rock slope attracts more attentions,but the upper rock mass(region B)may also be unstable.Therefo...In the practical slope engineering,the stability of lower sliding mass(region A)with back tensile cracks of the jointed rock slope attracts more attentions,but the upper rock mass(region B)may also be unstable.Therefore,in this study,based on the stepped failure mode of bedding jointed rock slopes,considering the influence of the upper rock mass on the lower stepped sliding mass,the improved failure model for analyzing the interaction force(F_(AB))between two regions is constructed,and the safety factors(F_(S))of two regions and whole region are derived.In addition,this paper proposes a method to determine the existence of F_(AB) using their respective acceleration values(a_(A) and a_(B))when regions A and B are unstable.The influences of key parameters on two regions and the whole region are analyzed.The results show that the variation of the F_(AB) and F_(S) of two regions can be obtained accurately based on the improved failure model.The accuracy of the improved failure model is verified by comparative analysis.The research results can explain the interaction mechanism of two regions and the natural phenomenon of slope failure caused by the development of cracks.展开更多
The traditional stability analysis method of geogrid reinforced slopes does not consider the effect of lateral swelling,so it is not applicable to reinforced expansive soil slopes.This paper reports a new stability an...The traditional stability analysis method of geogrid reinforced slopes does not consider the effect of lateral swelling,so it is not applicable to reinforced expansive soil slopes.This paper reports a new stability analysis method for geogrid reinforced expansive soil slopes.The additional pullout force of the free zone due to the lateral swelling and the anti-pullout safety factor of each geogrid layer were obtained by ensuring the overall stability of the reinforced slope.The optimum design was carried out to treat an expansive soil cut slope in Hubei Province,China,by changing the spacing and length of geogrid reinforcement.Calculation results show that the additional pullout force caused by lateral swelling has a great influence on the anti-pullout stability of geogrids,and the local stability of the reinforced slope will be overestimated if the swelling effect of soil in the free zone is not considered.展开更多
Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and it...Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope.展开更多
To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numeric...To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numerical simulation was carried out.The tempo-spatial damage characteristics of rock mass were analyzed.The evolution laws of MS source parameters during the formation of a rock collapse controlled by high geostress and geological structure were investigated.Additionally,a three-dimensional DEM model of the underground powerhouse caverns was built to reveal the deformation characteristics of rock mass.The results indicated that the MS events induced by excavation of high geostress underground powerhouse caverns occurred frequently.The large-stake crown of the main powerhouse was the main damage area.Prior to the rock collapse,the MS event count and accumulated energy release increased rapidly,while the apparent stress sharply increased and then decreased.The amount and proportion of shear and mixed MS events remarkably increased.The maximum displacement was generally located near the spandrel areas.The MS monitoring data and numerical simulation were in good agreement,which can provide significant references for damage evaluation and disaster forecasting in high geostress underground powerhouse caverns.展开更多
The long-term stability of large-span soft rock tunnel is influenced greatly by the creep effect of surrounding rock.The development of a new type of foam concrete which has the property of high compressibility and lo...The long-term stability of large-span soft rock tunnel is influenced greatly by the creep effect of surrounding rock.The development of a new type of foam concrete which has the property of high compressibility and low ductility was introduced.And it was made as filling material of reserved deformation layer between the first lining and the second lining used in large-span soft rock tunnel.The effect of the new type of foam concrete was simulated as filling material of reserved deformation layer using numerical simulation.Through the comparison with the common large-span soft rock tunnel,the vault settlement and surrounding convergence are reduced by about 61% and 45%,respectively,after creep of 100 a.And in the second lining,the plastic zone reduces apparently and the maximum equivalent plastic strain decreases relatively.So,it can be found that the application of the new type of foam concrete as the filling material of reserved deformation layer can relieve the excessive force in second lining induced by rock creep,reduce its deformation and improve the stability of tunnel.展开更多
In order to study the safety factor and instability process of cohesive soil slope, the discrete element method(DEM) was applied. DEM software PFC2 D was used to simulate the triaxial test to study the influence of th...In order to study the safety factor and instability process of cohesive soil slope, the discrete element method(DEM) was applied. DEM software PFC2 D was used to simulate the triaxial test to study the influence of the particle micro parameters on the macroscopic characteristics of cohesive soil and calibrate the micro parameters of DEM model on this basis. Embankment slope stability analysis was carried out by strength reduction and gravity increase method, it is shown that the safety factor obtained by strength reduction method is more conservative, and the arc-shaped feature of the sliding surface under the gravity increase method is more obvious. Throughout the progressive failure process, the failure trends, maximum displacements, and velocity changes obtained by the two methods were consistent. When slope was destroyed, the upper part was cracked, the middle part was sheared, and the lower part was destroyed by extrusion. The conclusions of this paper can be applied to the safety factor calculation of cohesive soil slopes and the analysis of the instability process.展开更多
In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(M...In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(MIMO)systems such as multi-variables,disturbances,and coupling,etc.Firstly,the structure and parameter tuning method of SADRC is introduced into this paper.Followed on this,virtual control variables are adopted into the MIMO systems,making the systems decoupled.Then the SADRC controller is designed for every subsystem.After this,a stability analyzed method via the Lyapunov function is proposed for the whole system.Finally,some simulations are presented to demonstrate the anti-disturbance and robustness of SADRC,and results show SADRC has a potential applications in engineering practice.展开更多
The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the contro...The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the controller and the controller to the actor sides in the WNCS, which were used to reduce data transmission, furthermore, to decrease the network collision and node energy consumption. Under the consideration of time-varying delays and signal transmission deadbands, the model for the WNCS was presented. A novel Lyapunov functional which took full advantages of the network factors was exploited. Meanwhile, new stability analysis and stabilization conditions for the WNCS were proposed, which described the relationship of the delay bounds, the transmission deadband bounds and the system stability. Two examples were used to demonstrate the effectiveness of the proposed methods. The results show that the proposed approach can guarantee asymptotical stability of the system and reduce the data transmission effectively.展开更多
The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was const...The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was constructed. The stability factor formulation by the upper bound theorem leads to a classical nonlinear programming problem, when the external work rate and internal energy dissipation were solved, and the constraint condition of the programming problem was given. The upper bound optimization problem can be solved efficiently by applying a nonlinear SQP algorithm, and stability factor was obtained, which agrees well with previous achievements.展开更多
The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional...The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.展开更多
Wireless communication is easily disturbed by unfortunate factors which drive the wireless environment unstable and complicated. Therefore, it is essential to consider these factors in stability analysis of the wirele...Wireless communication is easily disturbed by unfortunate factors which drive the wireless environment unstable and complicated. Therefore, it is essential to consider these factors in stability analysis of the wireless network. However, wireless channel characteristics and packets collisions are neglected in the classical fluid model. A wireless TCP fluid model (WTFM) for stability analysis of wireless network is proposed based on cross layers, which not only makes the congestion control based on random early detection (RED) available for wireless network, but also provides a more accurate model to analyze the stability of wireless system theoretically. In the proposed model, active queue management, abnormality of wireless channels and packets collisions are taken into consideration. The comparisons between evaluating results from the WTFM and the practical performance from NS2 simulations validate the accuracy of the proposed WTFM in the perspectives of delay, dropping probability, throughput, sliding window size and queue length. A set of comparisons among the proposed WTFM, the classical fluid model and the convex optimization model are conducted. The results demonstrate that the proposed WTFM model performs better than other schemes in comprehensive aspects on capturing the characteristic of the wireless network and computing complexity.展开更多
A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is perform...A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is performed in the frequency domain, and hence the condition is of great significance when the frequency-response method, which is widely used in the linear control theory and practice, is employed to synthesize the simplest T-S fuzzy controller. Besides, this sufficient condition is featured by a graphical interpretation, which makes the condition straightforward to be used. Comparisons are drawn between the performance of the simplest T-S fuzzy controller and that of the linear compensator. Two numerical examples are presented to demonstrate how this sufficient condition can be applied to both stable and unstable plants.展开更多
Soils are actually unsaturated in nature. In the present study, a stability analysis of a geosynthetic-reinforced slope in unsaturated soils subjected to various steady flow conditions is conducted based on limit anal...Soils are actually unsaturated in nature. In the present study, a stability analysis of a geosynthetic-reinforced slope in unsaturated soils subjected to various steady flow conditions is conducted based on limit analysis. Work rate by apparent cohesion due to matric suction is calculated based on the effective stress-based equation. Analytical expression of the required cohesion/stability number of slope is derived from the energy balance equation. An optimization code is programmed to capture the optimized solution of the stability number. Comparison is made to verify the present work and a parametric analysis is conducted to investigate the effects of soil type, infilitration rate, reinforcement strength and soil suction on slope stability afterwards. A set of numerical solutions is presented at the end of the paper for preliminary design purposes.展开更多
The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal over...The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.展开更多
Model of Casson nanofluid flow over a nonlinear shrinking surface is considered.Model of Tiwari and Das is applied to nanofluid comprising of sodium alginate with copper and silver.The governing nonlinear equations in...Model of Casson nanofluid flow over a nonlinear shrinking surface is considered.Model of Tiwari and Das is applied to nanofluid comprising of sodium alginate with copper and silver.The governing nonlinear equations incorporating the effects of the viscous dissipation are transformed into boundary value problems (BVPs) of ordinary differential equations (ODEs) by using appropriate similarity transformations.The resulting equations are converted into initial value problems (IVPs) using the shooting method which are then solved by Runge-Kutta method of fourth order.In order to determine the stability of the dual solutions obtained,stability analysis is performed and discovered that the first (second) solution is stable (unstable) and physically realizable (unrealizable).Both the thickness of the thermal boundary layer as well as temperature increase when the Casson parameter (β) is increased in the second solution.展开更多
This work focuses on motion control of high-velocity autonomous underwater vehicle(AUV).Conventional methods are effective solutions to motion control of low-and-medium-velocity AUV.Usually not taken into consideratio...This work focuses on motion control of high-velocity autonomous underwater vehicle(AUV).Conventional methods are effective solutions to motion control of low-and-medium-velocity AUV.Usually not taken into consideration in the control model,the residual dead load and damping force which vary with the AUV’s velocity tend to result in difficulties in motion control or even failure in convergence in the case of high-velocity movement.With full consideration given to the influence of residual dead load and changing damping force upon AUV motion control,a novel sliding-mode controller(SMC)is proposed in this work.The stability analysis of the proposed controller is carried out on the basis of Lyapunov function.The sea trials results proved the superiority of the sliding-mode controller over sigmoid-function-based controller(SFC).The novel controller demonstrated its effectiveness by achieving admirable control results in the case of high-velocity movement.展开更多
The main focus is nonlinear model-based dynamic positioning (DP) control system design. A nonlinear uniform global exponential stability (UGES) observer produces noise-free estimates of the position, the slowly varyin...The main focus is nonlinear model-based dynamic positioning (DP) control system design. A nonlinear uniform global exponential stability (UGES) observer produces noise-free estimates of the position, the slowly varying environmental disturbances and the velocity, which are used in a proportional-derivative (PD) + feedforward control law. The stability of this observer-controller system is proved by introducing a specific nonlinear cascaded system. The simulation results have successfully demonstrated the performance of designed DP control system.展开更多
An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membe...An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.展开更多
In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the...In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the stability region is given. The numerical example demonstrates that the method is efficient.展开更多
The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste roc...The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste rock dump under construction on two adjoining tailings ponds. The consolidation of the tailings foundation and the filling quality of the waste rock are investigated by the transient electromagnetic method through detecting water-rich areas and loose packing areas, from which, the depth of phreatic line is also estimated. With such information and the material parameters, the numerical method based on shear strength reduction is applied to analyzing the overall stability of the waste rock dump and the tailings ponds over a number of typical cross sections under both current and designed conditions, where the complex geological profiles exposed by site investigation are considered. Through numerical experiments, the influence of soft lenses in the tailings and possible loose packing areas in the waste rock is examined. Although large displacements may develop due to the soft tailings foundation, the results show that the waste rock dump satisfies the safety requirements under both present and designed conditions.展开更多
基金Projects(52208369,52309138,52108320)supported by the National Natural Science Foundation of ChinaProjects(2023NSFSC0284,2025ZNSFSC0409)supported by the Sichuan Science and Technology Program,ChinaProject(U22468214)supported by the Joint Fund Project for Railway Basic Research by the National Natural Science Foundation of China and China State Railway Group Co.,Ltd.
文摘In the practical slope engineering,the stability of lower sliding mass(region A)with back tensile cracks of the jointed rock slope attracts more attentions,but the upper rock mass(region B)may also be unstable.Therefore,in this study,based on the stepped failure mode of bedding jointed rock slopes,considering the influence of the upper rock mass on the lower stepped sliding mass,the improved failure model for analyzing the interaction force(F_(AB))between two regions is constructed,and the safety factors(F_(S))of two regions and whole region are derived.In addition,this paper proposes a method to determine the existence of F_(AB) using their respective acceleration values(a_(A) and a_(B))when regions A and B are unstable.The influences of key parameters on two regions and the whole region are analyzed.The results show that the variation of the F_(AB) and F_(S) of two regions can be obtained accurately based on the improved failure model.The accuracy of the improved failure model is verified by comparative analysis.The research results can explain the interaction mechanism of two regions and the natural phenomenon of slope failure caused by the development of cracks.
基金Project(51978085)supported by the National Natural Science Foundation of ChinaProject(201808430102)supported by the China Scholarship Council+1 种基金Project(JTG-201507)supported by the Highway Industry Standard Compilation Project of Ministry of Transportation,ChinaProject(kfj180102)supported by the Open Fund of Changsha University of Science&Technology,China。
文摘The traditional stability analysis method of geogrid reinforced slopes does not consider the effect of lateral swelling,so it is not applicable to reinforced expansive soil slopes.This paper reports a new stability analysis method for geogrid reinforced expansive soil slopes.The additional pullout force of the free zone due to the lateral swelling and the anti-pullout safety factor of each geogrid layer were obtained by ensuring the overall stability of the reinforced slope.The optimum design was carried out to treat an expansive soil cut slope in Hubei Province,China,by changing the spacing and length of geogrid reinforcement.Calculation results show that the additional pullout force caused by lateral swelling has a great influence on the anti-pullout stability of geogrids,and the local stability of the reinforced slope will be overestimated if the swelling effect of soil in the free zone is not considered.
基金Project(2006318802111) supported by West Traffic Construction Science and Technology of ChinaProject(2008yb004) supported by Excellent Doctorate Dissertations of Central South University, China Project(2008G032-3) supported by Key Item of Science and Technology Research of Railway Ministry of China
文摘Based on the upper bound limit analysis theorem and the shear strength reduction technique, the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory. The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes. The iterative optimization method was adopted to obtain the safety factors. Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion, and the validity of present method could be illuminated. From the numerical results, it can also be seen that nonlinear parameter rn, slope foot gradient ,β, height of slope H, slope top gradient a and soil bulk density γ have significant effects on the safety factor of the slope.
基金Project(2017YFC1501100)supported by the National Key R&D Program of ChinaProjects(51809221,51679158)supported by the National Natural Science Foundation of China。
文摘To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numerical simulation was carried out.The tempo-spatial damage characteristics of rock mass were analyzed.The evolution laws of MS source parameters during the formation of a rock collapse controlled by high geostress and geological structure were investigated.Additionally,a three-dimensional DEM model of the underground powerhouse caverns was built to reveal the deformation characteristics of rock mass.The results indicated that the MS events induced by excavation of high geostress underground powerhouse caverns occurred frequently.The large-stake crown of the main powerhouse was the main damage area.Prior to the rock collapse,the MS event count and accumulated energy release increased rapidly,while the apparent stress sharply increased and then decreased.The amount and proportion of shear and mixed MS events remarkably increased.The maximum displacement was generally located near the spandrel areas.The MS monitoring data and numerical simulation were in good agreement,which can provide significant references for damage evaluation and disaster forecasting in high geostress underground powerhouse caverns.
基金Projects(41072238,51009133)supported by the National Natural Science Foundation of China
文摘The long-term stability of large-span soft rock tunnel is influenced greatly by the creep effect of surrounding rock.The development of a new type of foam concrete which has the property of high compressibility and low ductility was introduced.And it was made as filling material of reserved deformation layer between the first lining and the second lining used in large-span soft rock tunnel.The effect of the new type of foam concrete was simulated as filling material of reserved deformation layer using numerical simulation.Through the comparison with the common large-span soft rock tunnel,the vault settlement and surrounding convergence are reduced by about 61% and 45%,respectively,after creep of 100 a.And in the second lining,the plastic zone reduces apparently and the maximum equivalent plastic strain decreases relatively.So,it can be found that the application of the new type of foam concrete as the filling material of reserved deformation layer can relieve the excessive force in second lining induced by rock creep,reduce its deformation and improve the stability of tunnel.
基金Project(51808116) supported by the National Natural Science Foundation of ChinaProject(BK20180404) supported by the Natural Science Foundation of Jiangsu Province, China+1 种基金Project(KFJ170106) supported by the Changsha University of Science & Technology via Open Fund of National Engineering Laboratory of Highway Maintenance Technology,ChinaProject(242020R40133) supported by Fundamental Research Funds for the Central Universities, China。
文摘In order to study the safety factor and instability process of cohesive soil slope, the discrete element method(DEM) was applied. DEM software PFC2 D was used to simulate the triaxial test to study the influence of the particle micro parameters on the macroscopic characteristics of cohesive soil and calibrate the micro parameters of DEM model on this basis. Embankment slope stability analysis was carried out by strength reduction and gravity increase method, it is shown that the safety factor obtained by strength reduction method is more conservative, and the arc-shaped feature of the sliding surface under the gravity increase method is more obvious. Throughout the progressive failure process, the failure trends, maximum displacements, and velocity changes obtained by the two methods were consistent. When slope was destroyed, the upper part was cracked, the middle part was sheared, and the lower part was destroyed by extrusion. The conclusions of this paper can be applied to the safety factor calculation of cohesive soil slopes and the analysis of the instability process.
基金supported by the Scientific Research Innovation Development Foundation of Army Engineering University((2019)71).
文摘In this paper,a linear/nonlinear switching active disturbance rejection control(SADRC)based decoupling control approach is proposed to deal with some difficult control problems in a class of multi-input multi-output(MIMO)systems such as multi-variables,disturbances,and coupling,etc.Firstly,the structure and parameter tuning method of SADRC is introduced into this paper.Followed on this,virtual control variables are adopted into the MIMO systems,making the systems decoupled.Then the SADRC controller is designed for every subsystem.After this,a stability analyzed method via the Lyapunov function is proposed for the whole system.Finally,some simulations are presented to demonstrate the anti-disturbance and robustness of SADRC,and results show SADRC has a potential applications in engineering practice.
基金Project(61104106)supported by the National Natural Science Foundation of ChinaProject(201202156)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(LJQ2012100)supported by the Program for Liaoning Excellent Talents in University(LNET),China
文摘The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the controller and the controller to the actor sides in the WNCS, which were used to reduce data transmission, furthermore, to decrease the network collision and node energy consumption. Under the consideration of time-varying delays and signal transmission deadbands, the model for the WNCS was presented. A novel Lyapunov functional which took full advantages of the network factors was exploited. Meanwhile, new stability analysis and stabilization conditions for the WNCS were proposed, which described the relationship of the delay bounds, the transmission deadband bounds and the system stability. Two examples were used to demonstrate the effectiveness of the proposed methods. The results show that the proposed approach can guarantee asymptotical stability of the system and reduce the data transmission effectively.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51178468)supported by the National Natural Science Foundation of China
文摘The stability of natural slope was analyzed on the basis of limit analysis. The sliding model of a kind of natural slope was presented. A new kinematically admissible velocity field for the new sliding model was constructed. The stability factor formulation by the upper bound theorem leads to a classical nonlinear programming problem, when the external work rate and internal energy dissipation were solved, and the constraint condition of the programming problem was given. The upper bound optimization problem can be solved efficiently by applying a nonlinear SQP algorithm, and stability factor was obtained, which agrees well with previous achievements.
基金Project(51479097)supported by the National Natural Science Foundation of ChinaProject(2013-KY-2)supported by State Key Laboratory of Hydroscience and Hydraulic Engineering,China
文摘The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.
基金supported by the National Natural Science Foundation of China(61106022)the Beijing Natural Science Foundation(4143066)
文摘Wireless communication is easily disturbed by unfortunate factors which drive the wireless environment unstable and complicated. Therefore, it is essential to consider these factors in stability analysis of the wireless network. However, wireless channel characteristics and packets collisions are neglected in the classical fluid model. A wireless TCP fluid model (WTFM) for stability analysis of wireless network is proposed based on cross layers, which not only makes the congestion control based on random early detection (RED) available for wireless network, but also provides a more accurate model to analyze the stability of wireless system theoretically. In the proposed model, active queue management, abnormality of wireless channels and packets collisions are taken into consideration. The comparisons between evaluating results from the WTFM and the practical performance from NS2 simulations validate the accuracy of the proposed WTFM in the perspectives of delay, dropping probability, throughput, sliding window size and queue length. A set of comparisons among the proposed WTFM, the classical fluid model and the convex optimization model are conducted. The results demonstrate that the proposed WTFM model performs better than other schemes in comprehensive aspects on capturing the characteristic of the wireless network and computing complexity.
文摘A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is performed in the frequency domain, and hence the condition is of great significance when the frequency-response method, which is widely used in the linear control theory and practice, is employed to synthesize the simplest T-S fuzzy controller. Besides, this sufficient condition is featured by a graphical interpretation, which makes the condition straightforward to be used. Comparisons are drawn between the performance of the simplest T-S fuzzy controller and that of the linear compensator. Two numerical examples are presented to demonstrate how this sufficient condition can be applied to both stable and unstable plants.
基金Project(2019M650011)supported by China Postdoctoral Science FoundationProject(51421005)supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of ChinaProject(2015CB057902)supported by the National Basic Research Program of China
文摘Soils are actually unsaturated in nature. In the present study, a stability analysis of a geosynthetic-reinforced slope in unsaturated soils subjected to various steady flow conditions is conducted based on limit analysis. Work rate by apparent cohesion due to matric suction is calculated based on the effective stress-based equation. Analytical expression of the required cohesion/stability number of slope is derived from the energy balance equation. An optimization code is programmed to capture the optimized solution of the stability number. Comparison is made to verify the present work and a parametric analysis is conducted to investigate the effects of soil type, infilitration rate, reinforcement strength and soil suction on slope stability afterwards. A set of numerical solutions is presented at the end of the paper for preliminary design purposes.
基金supported in part by the Scientific Research Project of Heilongjiang Province Education Bureau(12541200)
文摘The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.
基金Universiti Utara Malaysia (UUM) for the moral and financial support in conducting this research
文摘Model of Casson nanofluid flow over a nonlinear shrinking surface is considered.Model of Tiwari and Das is applied to nanofluid comprising of sodium alginate with copper and silver.The governing nonlinear equations incorporating the effects of the viscous dissipation are transformed into boundary value problems (BVPs) of ordinary differential equations (ODEs) by using appropriate similarity transformations.The resulting equations are converted into initial value problems (IVPs) using the shooting method which are then solved by Runge-Kutta method of fourth order.In order to determine the stability of the dual solutions obtained,stability analysis is performed and discovered that the first (second) solution is stable (unstable) and physically realizable (unrealizable).Both the thickness of the thermal boundary layer as well as temperature increase when the Casson parameter (β) is increased in the second solution.
基金Project(2011AA09A106)supported by the Hi-tech Research and Development Program of ChinaProjects(51179035,51779057)supported by the National Natural Science Foundation of ChinaProject(2015ZX01041101)supported by Major National Science and Technology of China
文摘This work focuses on motion control of high-velocity autonomous underwater vehicle(AUV).Conventional methods are effective solutions to motion control of low-and-medium-velocity AUV.Usually not taken into consideration in the control model,the residual dead load and damping force which vary with the AUV’s velocity tend to result in difficulties in motion control or even failure in convergence in the case of high-velocity movement.With full consideration given to the influence of residual dead load and changing damping force upon AUV motion control,a novel sliding-mode controller(SMC)is proposed in this work.The stability analysis of the proposed controller is carried out on the basis of Lyapunov function.The sea trials results proved the superiority of the sliding-mode controller over sigmoid-function-based controller(SFC).The novel controller demonstrated its effectiveness by achieving admirable control results in the case of high-velocity movement.
文摘The main focus is nonlinear model-based dynamic positioning (DP) control system design. A nonlinear uniform global exponential stability (UGES) observer produces noise-free estimates of the position, the slowly varying environmental disturbances and the velocity, which are used in a proportional-derivative (PD) + feedforward control law. The stability of this observer-controller system is proved by introducing a specific nonlinear cascaded system. The simulation results have successfully demonstrated the performance of designed DP control system.
基金surported by Tianjin Science and Technology Development for Higher Education(20051206).
文摘An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.
文摘In this paper, a parallel simulation algorithm for the control problem in differential algebraic system is presented. The error of the algorithm is estimated. The stability analysis is made for a model problem and the stability region is given. The numerical example demonstrates that the method is efficient.
基金Projects(51209118,71373245)supported by the National Natural Science Foundation of ChinaProject(2014JBKY01)supported by the Fundamental Research Funds for CASST,China
文摘The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste rock dump under construction on two adjoining tailings ponds. The consolidation of the tailings foundation and the filling quality of the waste rock are investigated by the transient electromagnetic method through detecting water-rich areas and loose packing areas, from which, the depth of phreatic line is also estimated. With such information and the material parameters, the numerical method based on shear strength reduction is applied to analyzing the overall stability of the waste rock dump and the tailings ponds over a number of typical cross sections under both current and designed conditions, where the complex geological profiles exposed by site investigation are considered. Through numerical experiments, the influence of soft lenses in the tailings and possible loose packing areas in the waste rock is examined. Although large displacements may develop due to the soft tailings foundation, the results show that the waste rock dump satisfies the safety requirements under both present and designed conditions.