期刊文献+
共找到47,120篇文章
< 1 2 250 >
每页显示 20 50 100
Reviewing System Strength Metrics in IBR-Dominated Power Systems:Definitions,Principles,and Classifications
1
作者 ZHU Yue QIU Zitian +2 位作者 HADJILEONIDAS Andreas GU Yunjie GREEN Tim 《南方电网技术》 北大核心 2025年第7期72-89,共18页
Along with the growing integration of renewable energy resources,the new power systems,which are dominated by inverter-based resources(IBRs),are facing critical challenges in both planning and operation stages.The con... Along with the growing integration of renewable energy resources,the new power systems,which are dominated by inverter-based resources(IBRs),are facing critical challenges in both planning and operation stages.The conventionally used system strength metric,short-circuit ratio(SCR),exhibits limitations in assessing connections of new IBRs due to their unique dynamic behaviour and control interactions.In this paper,the definition of system strength is reviewed.The underlying principles of conventional SCR and its variants are then discussed,with their constraints explained.To describe the system strength in a more comprehensive way,this paper further classifies system strength into three categories:quasi-static,small-signal,and large-signal.For each category,relevant metrics are introduced and their relative merits are discussed.Electromagnetic transient simulations are presented to illustrate key insights. 展开更多
关键词 system strength short-circuit ratio inverter-based resource quasi-static system strength small-signal system strength large-signal system strength
在线阅读 下载PDF
Strength Development of Alkali-activated Binders Prepared with Mechanically Ground Fly Ash During Microwave-curing
2
作者 ZHU Huimei LIU Yu LI Hui 《材料导报》 北大核心 2025年第20期108-114,共7页
Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by ... Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by synthesizing AAFA using original,medium-fine,and ultrafine fly ash as precursors,and then specimens were cured with a five-stage temperature-controlled microwave.The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing,reaching 28 MPa at stage 2.Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I,which is 26%higher than the peak strength of original AAFA.It is attributed to the significant rise in their specific surface area,which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels.Additionally,nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products,thereby significantly improving their microstructure.In contrast,ultrafine fly ash,primarily composed of fragmented particles,necessitated a substantial amount of water,which adversely affects the absorption efficiency for microwave of AAFA specimens.Thus,ultrafine AAFA specimens consistently exhibit the lowest compressive strength.Specifically,at the end of curing,the compressive strength of these three specimens with microwave-curing is approximately 32%,59%,and 172%higher than that of the steam-cured sample,respectively.These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA. 展开更多
关键词 alkali-activated fly ash binder microwave-curing particle size compressive strength
在线阅读 下载PDF
Ground reaction curves for strain-softening rock masses with ground reinforcement based on unified strength criterion
3
作者 CHEN Xuan-hao ZHANG Ding-li +1 位作者 SUN Zhen-yu CHEN Wen-bo 《Journal of Central South University》 2025年第9期3383-3404,共22页
Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-sof... Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-softening (SS) rock masses. This study proposes a novel analytical model to determine the GRCs of SS rock masses, incorporating ground reinforcement and intermediate principal stress (IPS). The SS constitutive model captures the progressive post- peak failure, while the elastic-brittle model simulates reinforced rock masses. Nine combined states are innovatively investigated to analyze plastic zone development in natural and reinforced regions. Each region is analyzed separately, and coupled through boundary conditions at interface. Comparison with three types of existing models indicates that these models overestimate reinforcement effects. The deformation prediction errors of single geological material models may exceed 75%. Furthermore, neglecting softening and residual zones in natural regions could lead to errors over 50%. Considering the IPS can effectively utilize the rock strength to reduce tunnel deformation by at least 30%, thereby saving on reinforcement and support costs. The computational results show a satisfactory agreement with the monitoring data from a model test and two tunnel projects. The proposed model may offer valuable insights into the design and construction of reinforced tunnel engineering. 展开更多
关键词 ground reinforcement STRAIN-SOFTENING unified strength criterion tunnel responses analytical model
在线阅读 下载PDF
Strength and failure characteristics of hard rock containing a single structural plane under varied loading angles : A true triaxial investigation
4
作者 XU Huai-sheng LI Shao-jun +3 位作者 XU Ding-ping LIU Xu-feng FENG Guang-liang WANG Zhao-feng 《Journal of Central South University》 2025年第5期1903-1921,共19页
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr... The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures. 展开更多
关键词 true triaxial compression hard rock structural plane loading angle strength failure characteristics
在线阅读 下载PDF
Stress gradient analytic solution and reasonable support prestress of roadway surrounding rock based on unified strength criterion:A case study
5
作者 JING Suo-lin WEN Zhi-jie +2 位作者 ZUO Yu-jun LI Qiu-ju HAO Peng 《Journal of Central South University》 2025年第2期449-468,共20页
The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified ... The stress gradient of surrounding rock and reasonable prestress of support are the keys to ensuring the stability of roadways.The elastic-plastic analytical solution for surrounding rock was derived based on unified strength theory.A model for solving the stress gradient of the surrounding rock with the intermediate principal stress parameter b was established.The correctness and applicability of the solution for the stress gradient in the roadway surrounding rock was verified via multiple methods.Furthermore,the laws of stress,displacement,and the plastic zone of the surrounding rock with different b values and prestresses were revealed.As b increases,the stress gradient in the plastic zone increases,and the displacement and plastic zone radius decrease.As the prestress increases,the peak stress shifts toward the sidewalls,and the stress and stress gradient increments decrease.In addition,the displacement increment and plastic zone increment were proposed to characterize the support effect.The balance point of the plastic zone area appears before that of the displacement zone.The relationship between the stress gradient compensation coefficient and the prestress is obtained.This study provides a research method and idea for determining the reasonable prestress of support in roadways. 展开更多
关键词 PRESTRESS support compensation surrounding rock damage stress gradient analytic solution unified strength theory
在线阅读 下载PDF
Anisotropic strength and deformation of irregular columnar jointed rock masses under triaxial stress
6
作者 QUE Xiang-cheng ZHU Zhen-de +1 位作者 NIU Zi-hao ZHU Shu 《Journal of Central South University》 2025年第2期643-655,共13页
The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is c... The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is crucial for related engineering safety.Combined with the irregular jointed networks observed in the field,artificial irregular CJRM(ICJRM)samples with various inclination angles were prepared for triaxial tests.The results showed that the increase in confining pressure can enhance the ability of the ICJRM to resist deformation and failure,and reduce the deformation and strength anisotropic degrees.Considering the field stress situation,the engineering parts with an inclination angle of 30°−45°need to be taken seriously.Four typical failure modes were identified,and the sample with an inclination angle of 15°showed the same failure behavior as the field CJRM.Traditional and improved joint factor methods were used to establish empirical relationships for predicting the strength and deformation of CJRM under triaxial stress.Since the improved joint factor method can reflect the unique structure of CJRM,the predictive ability of the empirical relationship based on the improved method is better than that based on the traditional joint factor method. 展开更多
关键词 irregular columnar jointed rock mass triaxial stress strength DEFORMATION anisotropic mechanical property empirical relation
在线阅读 下载PDF
A cohesion loss model for determining residual strength of deep bedded sandstone
7
作者 SONG Zhi-xiang ZHANG Jun-wen +12 位作者 ZHANG Yu-jie WU Shao-kang BAI Xu-yang ZHANG Li-chao ZHANG Sui-lin ZHANG Xu-wen FAN Guang-chen LI Wen-jun ZENG Ban-quan WANG Shi-ji SUN Xiao-yan SANG Pei-miao LI Ning 《Journal of Central South University》 2025年第7期2593-2618,共26页
Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep ch... Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep chambers.Therefore,previous residual strength models of rocks established were reviewed.And corresponding related problems were stated.Subsequently,starting from the effects of bedding and whole life-cycle evolution process,series of triaxial mechanical tests of deep bedded sandstone with five bedding angles were conducted under different confining pressures.Then,six residual strength models considering the effects of bedding and whole life-cycle evolution process were established and evaluated.Finally,a cohesion loss model for determining residual strength of deep bedded sandstone was verified.The results showed that the effects of bedding and whole life-cycle evolution process had both significant influences on the evolution characteristic of residual strength of deep bedded sandstone.Additionally,residual strength parameters:residual cohesion and residual internal friction angle of deep bedded sandstone were not constant,which both significantly changed with increasing bedding angle.Besides,the cohesion loss model was the most suitable for determining and estimating the residual strength of bedded rocks,which could provide more accurate theoretical guidance for the stability control of deep chambers. 展开更多
关键词 residual strength deep bedded sandstone whole life-cycle evolution process cohesion loss model rock mechanics
在线阅读 下载PDF
Face stability analysis of longitudinally inclined shield tunnel considering the effect of tensile strength cut-off and pore water pressure
8
作者 HUANG Fu WANG Yong-tao +1 位作者 ZHANG Min YANG Zi-han 《Journal of Central South University》 2025年第3期1080-1098,共19页
Because of actual requirement,shield machine always excavates with an inclined angle in longitudinal direction.Since many previous studies mainly focus on the face stability of the horizontal shield tunnel,the effects... Because of actual requirement,shield machine always excavates with an inclined angle in longitudinal direction.Since many previous studies mainly focus on the face stability of the horizontal shield tunnel,the effects of tensile strength cut-off and pore water pressure on the face stability of the longitudinally inclined shield tunnel are not well investigated.A failure mechanism of a longitudinally inclined shield tunnel face is constructed based on the spatial discretization technique and the tensile strength cut-off criterion is introduced to modify the constructed failure mechanism.The pore water pressure is introduced as an external force into the equation of virtual work and the objective function of the chamber pressure of the shield machine is obtained.Moreover,the critical chamber pressure of the longitudinally inclined shield tunnel is computed by optimal calculation.Parametric analysis indicates that both tensile strength cut-off and pore water pressure have a significant impact on the chamber pressure and the range of the collapse block.Finally,the theoretical results are compared with the numerical results calculated by FLAC3D software which proves that the proposed approach is effective. 展开更多
关键词 longitudinally inclined tunnel pore water pressure tensile strength cut-off spatial discretization technique limit analysis
在线阅读 下载PDF
Ultrahigh strength and improved electrical conductivity in an aging strengthened copper alloy processed by combination of equal channel angular pressing and thermomechanical treatment 被引量:2
9
作者 WANG Xu LI Zhou +1 位作者 MENG Xiang-peng XIAO Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1823-1837,共15页
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper... In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample. 展开更多
关键词 Cu-Ti alloy equal channel angular pressing ROLLING aging treatment high strength
在线阅读 下载PDF
Mediating role of inner strength in the relationship between medication literacy and medication adherence among kidney transplant patients 被引量:1
10
作者 WANG Liping FANG Chunhua +3 位作者 NIE Manhua ZHU Li LIU Sai LI Haiyang 《中南大学学报(医学版)》 CAS CSCD 北大核心 2024年第6期961-971,共11页
Objective:Compared with long-term renal replacement therapy,kidney transplantation is the ideal treatment for end-stage renal disease(ESRD),significantly extending patient life and improving quality of life.Kidney tra... Objective:Compared with long-term renal replacement therapy,kidney transplantation is the ideal treatment for end-stage renal disease(ESRD),significantly extending patient life and improving quality of life.Kidney transplant patients need to adhere to lifelong immunosuppressive medication regimens,but their medication adherence is generally poor compared with other organ transplant recipients.Medication adherence is closely related to medication literacy and psychological status,yet related studies are limited.This study aims to investigate the current status of medication adherence,inner strength,and medication literacy in kidney transplant patients,analyze the relationships among these 3 factors,and explore the mediating role of inner strength in the relationship between medication literacy and medication adherence.Methods:A cross-sectional survey was conducted from March to October 2023 involving 421 patients aged≥18 years who visited kidney transplantation outpatient clinics at 4 tertiary hospitals in Hunan Province.The inner strength,medication literacy,and medication adherence of kidney transplant patients were investigated using the Inner Strength Scale(ISS),the Chinese version of the Medication Literacy Assessment in Spanish and English(MedLitRxSE),and the Chinese version of the Morisky Medication Adherence Scale-8(C-MMAS-8),respectively.Univariate analysis was performed to examine the effects of demographic and clinical data on medication adherence.Correlation analysis was conducted to explore the relationships among medication literacy,medication adherence,and inner strength.Significant variables from univariate and correlation analyses were further analyzed using multiple linear regression,and the mediating effect of inner strength was explored.Results:Among the 421 questionnaires collected,408 were valid,with an effective rate of 96.91%.The scores of C-MMAS-8,MedLitRxSE,and ISS were 6.64±1.16,100.63±14.67,and 8.47±4.03,respectively.Among the 408 patients,only 86(21.08%)patients had a high level of medication adherence,whereas 230(56.37%)patients had a medium level of medication adherence,and 92(22.55%)patients had poor medication adherence.Univariate analysis indicated that the kidney transplant patients’age,marital status,education levels,years since their kidney transplant operation,number of hospitalizations after the kidney transplant,and adverse drug reactions showed significant differences in medication adherence(all P<0.05).Correlation analysis showed that inner strength positively correlated with both medication literacy(r=0.183,P<0.001)and medication adherence(r=0.201,P<0.001).Additionally,there was a positive correlation between medication adherence and medication literacy(r=0.236,P<0.001).Inner strength accounted for 13.22%of the total effect in the mediating role between medication literacy and medication adherence.Conclusion:The level of medication adherence among kidney transplant patients needs improvement,and targeted intervention measures are essential.Inner strength mediates the relationship between medication literacy and medication adherence in these patients.Healthcare professionals should focus on enhancing medication literacy and supporting patients’inner strength to improve medication adherence. 展开更多
关键词 inner strength medication literacy medication adherence kidney transplant patients
在线阅读 下载PDF
Strength criterion for crystalline rocks considering grain size effect and tensile-compressive strength ratio
11
作者 ZHANG Cheng-han JI Hong-guang +3 位作者 JIANG Peng YOU Shuang GENG Qian-cheng JIAO Chen-jiang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2365-2378,共14页
The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the... The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data. 展开更多
关键词 crystalline rock grain size effect strength criterion tensile-compressive strength ratio finite element algorithm
在线阅读 下载PDF
Ultimate Strength of Hull Perforated Plate Under Extreme Cyclic Loading
12
作者 ZHENG Ji-qian FENG Liang CHEN Xu-guang 《船舶力学》 EI CSCD 北大核心 2024年第12期1925-1939,共15页
In this study, the influence of opening parameters on the ultimate strength of perforated plates subjected to extreme cyclic loading in the presence of material kinematic hardening and isotro pic hardening was analyze... In this study, the influence of opening parameters on the ultimate strength of perforated plates subjected to extreme cyclic loading in the presence of material kinematic hardening and isotro pic hardening was analyzed. It is found that the ultimate strength of the perforated plates decreases rapidly and stabilizes in the first four cycles. Plates with oblong openings have a greater ultimate strength compared to plates with rectangular openings, while the relative strengthening ratio decreases over the duration of the cycle. The location of the openings is also an important parameter that affects the strength of the structure, as the plates with openings close to the edges in the longitudinal direction have higher strengths, while in the transverse direction the strengths are higher when the openings are close to the center. Among the three opening-strengthening methods compared, the Carling stiffener method maintains a better strengthening effect under cyclic loads for many periods. 展开更多
关键词 extreme cyclic loading perforated plate ultimate strength
在线阅读 下载PDF
Influencing factors analysis of hard limestone reformation and strength weakening under acidic effect
13
作者 HOU Ming-xiao HUANG Bing-xiang +2 位作者 ZHAO Xing-long JIAO Xue-jie ZHENG Chen-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2446-2466,共21页
Roof disaster has always been an important factor restricting coal mine safety production.Acidic effect can reform the rock mass structure to weaken the macroscopic strength characteristics,which is an effective way t... Roof disaster has always been an important factor restricting coal mine safety production.Acidic effect can reform the rock mass structure to weaken the macroscopic strength characteristics,which is an effective way to control the hard limestone roof.In this study,the effects of various factors on the reaction characteristics and mechanical properties of limestone were analyzed.The results show that the acid with stronger hydrogen production capacity after ionization(pK_(a)<0)has more prominent damage to the mineral grains of limestone.When pKa increases from−8.00 to 15.70,uniaxial compressive strength and elastic modulus of limestone increase by 117.22%and 75.98%.The influence of acid concentration is manifested in the dissolution behavior of mineral crystals,the crystal defects caused by large-scale acid action will lead to the deterioration of limestone strength,and the strength after 15%concentration reformation can be reduced by 59.42%.The effect of acidification time on limestone has stages and is the most obvious in the initial metathesis reaction stage(within 60 min).The key to the strength damage of acidified limestone is the participation of hydrogen ions in the reaction system.Based on the analytic hierarchy process method,the influence weights of acid type,acid concentration and acidification time on strength are 24.30%,59.54% and 16.16%,respectively.The research results provide theoretical support for the acidification control of hard limestone roofs in coal mines. 展开更多
关键词 hard roof acidic effect structural reformation strength weakening influencing factors
在线阅读 下载PDF
Analysis on the turning point of dynamic in-plane compressive strength for a plain weave composite
14
作者 Xiaoyu Wang Zhixing Li +2 位作者 Licheng Guo Zhenxin Wang Jiuzhou Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期485-495,共11页
Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate ... Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate of composites was established. Then the upper limit of strain rate, restricted by stress equilibrium and constant loading rate, was rationally estimated and confirmed by tests. Within the achievable range of 0.001/s-895/s, it was found that the strength increased first and subsequently decreased as the strain rate increased. This feature was also reflected by the turning point(579/s) of the bilinear model for strength prediction. The transition in failure mechanism, from local opening damage to completely splitting destruction, was mainly responsible for such strain rate effects. And three major failure modes were summarized under microscopic observations: fiber fracture, inter-fiber fracture, and interface delamination. Finally, by introducing a nonlinear damage variable, a simplified ZWT model was developed to characterize the dynamic mechanical response. Excellent agreement was shown between the experimental and simulated results. 展开更多
关键词 Plain weave composite Dynamic strength Quantitative criterion Turning point Failure mechanism
在线阅读 下载PDF
Assessing the range of blasting-induced cracks in the surrounding rock of deeply buried tunnels based on the unified strength theory
15
作者 LI Liang CHEN Jia-jun +3 位作者 ZHAO Lian-heng HE Ke-pei HU Shi-hong LI Hua-long 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2341-2364,共24页
Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in... Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed. 展开更多
关键词 deep drilling and blasting cracks in surrounding rock unified strength theory intermediate principle stress in-situ stress cavity expansion dilatancy characteristics
在线阅读 下载PDF
基于3D打印技术的软弱夹层干湿循环作用强度劣化试验研究 被引量:1
16
作者 刘浩 张文 芦磊 《水文地质工程地质》 北大核心 2025年第3期125-133,共9页
软弱夹层是一类较为特殊敏感的地质体,其存在对水电工程边坡的稳定性起控制性作用。为了深入探讨库岸边坡中软弱夹层在干湿循环条件下的剪切力学特性及破坏机制,以菜籽坝抽水蓄能电站下水库坝址左岸坝肩边坡为研究对象,利用3D打印技术... 软弱夹层是一类较为特殊敏感的地质体,其存在对水电工程边坡的稳定性起控制性作用。为了深入探讨库岸边坡中软弱夹层在干湿循环条件下的剪切力学特性及破坏机制,以菜籽坝抽水蓄能电站下水库坝址左岸坝肩边坡为研究对象,利用3D打印技术制备具有真实岩石形貌特征的结构面,并计算出结构面的粗糙度系数JRC,然后开展干湿循环作用下含人工节理面的软弱夹层剪切试验。研究结果表明,经过不同次数干湿循环,抗剪强度随循环次数增加呈负指数型降低,最终会趋于一个极低的稳定值,为初始强度的5%,且抗剪强度与结构面粗糙度呈正相关。软弱夹层的剪切应力-应变曲线在破坏阶段会呈阶梯式降低,结构面粗糙度越大,残余曲线阶梯式降低次数越多,且结构面粗糙度大的试样会在更短的剪切位移到达残余强度阶段,残余强度也随干湿循环次数的增加而降低。研究成果对抽水蓄能电站岸坡的稳定性评价具有较大的参考意义。 展开更多
关键词 软弱夹层 干湿循环 3D打印 强度劣化 粗糙度 残余强度
在线阅读 下载PDF
Q460高强钢焊接波形钢腹板梁的剪切性能研究 被引量:1
17
作者 刘勇 冀伟 +1 位作者 赵彦华 杨文娟 《哈尔滨工程大学学报》 北大核心 2025年第2期234-242,共9页
Q460高强钢焊接波形钢腹板抗剪强度的计算是波形钢腹板组合梁桥设计的关键问题。本文综合考虑焊接残余应力、初始几何缺陷和几何参数的影响,通过数值模拟的方法对3种常用波型的Q460高强钢波形钢腹板梁进行了非线性剪切屈曲研究。通过对... Q460高强钢焊接波形钢腹板抗剪强度的计算是波形钢腹板组合梁桥设计的关键问题。本文综合考虑焊接残余应力、初始几何缺陷和几何参数的影响,通过数值模拟的方法对3种常用波型的Q460高强钢波形钢腹板梁进行了非线性剪切屈曲研究。通过对比有限元模型的计算值和试验实测值,证明了有限元模型的正确性;分析了焊接残余应力和初始几何缺陷对高强钢焊接波形钢腹板梁抗剪强度的影响;将有限元结果与既有的波形钢腹板梁抗剪强度计算公式进行比较,并提出了抗剪强度下限计算公式。结果表明:所建立的有限元模型可用于计算波形钢腹板梁的初始刚度、极限抗剪强度、荷载-位移曲线和残余抗剪强度;焊接残余应力对抗剪强度影响较小,初始几何缺陷则具有显著影响,影响程度在剪切长细比λ_(s)>0.6后愈发明显;随着腹板厚度的增加,波形钢腹板的初始刚度和抗剪强度显著提升;波形钢腹板高度越小,钢材的利用率和残余抗剪强度越高;波形钢腹板的残余抗剪强度与波纹深度无关,而与破坏模式有关。研究成果可为高强钢焊接波形钢腹板梁抗剪强度计算与分析提供参考。 展开更多
关键词 波形钢腹板 高强钢 剪切强度 非线性 焊接残余应力 初始几何缺陷 参数分析 数值模拟
在线阅读 下载PDF
稻壳灰与SAP协同内养护对碱激发矿渣胶凝材料性能的影响 被引量:3
18
作者 吕阳 吴远帅 +6 位作者 葛云露 陈扬 许金生 蹇守卫 但建明 温小栋 李相国 《硅酸盐通报》 北大核心 2025年第2期634-641,共8页
早期自收缩大和开裂风险高是限制碱激发矿渣(AAS)胶凝材料推广应用的重要难题,利用高吸水树脂(SAP)进行内养护是解决这些问题的有效方法之一,但这种方法会降低AAS的力学性能。本研究将多孔活性稻壳灰(RHA)与SAP复配形成复合内养护组分(S... 早期自收缩大和开裂风险高是限制碱激发矿渣(AAS)胶凝材料推广应用的重要难题,利用高吸水树脂(SAP)进行内养护是解决这些问题的有效方法之一,但这种方法会降低AAS的力学性能。本研究将多孔活性稻壳灰(RHA)与SAP复配形成复合内养护组分(SAP-RHA,SR),对比分析了SR与SAP内养护对AAS工作性能、收缩特性、水化产物及力学性能的影响。结果表明,相比于单独使用SAP内养护,SR内养护不仅进一步降低了AAS的自收缩,还有效提高了AAS的抗压强度,在一定程度上解决了SAP内养护所导致的力学性能降低的问题。 展开更多
关键词 碱激发矿渣 高吸水树脂 稻壳灰 自收缩 抗压强度
在线阅读 下载PDF
电石渣激发磷石膏矿渣的强度及浸出特性研究 被引量:1
19
作者 姚威 谈云志 +4 位作者 明华军 沈克军 吴赤球 吕伟 吴军 《三峡大学学报(自然科学版)》 北大核心 2025年第3期74-80,共7页
少量碱性水泥或石灰可激发磷石膏-粒化高炉矿渣,形成水硬性胶凝材料,但水泥和石灰成本较高,不符合国家“碳达峰、碳中和”战略,而作为工业废弃物的电石渣也富含碱性氧化钙,因此本文提出用电石渣取代石灰激发磷石膏-粒化高炉矿渣,以达到... 少量碱性水泥或石灰可激发磷石膏-粒化高炉矿渣,形成水硬性胶凝材料,但水泥和石灰成本较高,不符合国家“碳达峰、碳中和”战略,而作为工业废弃物的电石渣也富含碱性氧化钙,因此本文提出用电石渣取代石灰激发磷石膏-粒化高炉矿渣,以达到减少生产成本、“以废治废”的目的.通过对不同龄期的试样进行抗压强度、可溶磷浸出、可溶氟浸出、SEM、XRD等试验来验证电石渣取代石灰的可行性.结果表明:对于磷石膏-矿渣体系,电石渣具有和石灰相似的激发效果,其能与磷石膏、矿渣生成水化硅酸钙和钙矾石,形成胶凝骨架,增强混合试样强度,最佳掺比试样28 d强度超过40 MPa;其可溶磷、氟浸出液质量浓度均满足规范要求,矿渣-磷石膏-电石渣掺比为80∶12∶8时强度与磷氟固定效果均最好. 展开更多
关键词 磷石膏 电石渣 粒化高炉矿渣 强度 浸出
在线阅读 下载PDF
饱和土不排水计算理论与方法探究 被引量:1
20
作者 宋二祥 《岩土工程学报》 EI CAS 北大核心 2025年第1期1-29,共29页
饱和土不排水强度及变形计算是岩土工程中颇具难度的复杂课题,至今业内对其多方面的问题仍存争议。结合笔者多年的相关学习研究,对此课题进行了较系统深入的探究。首先讨论了饱和土不排水计算的总应力法与有效应力法及各自的局限,并从... 饱和土不排水强度及变形计算是岩土工程中颇具难度的复杂课题,至今业内对其多方面的问题仍存争议。结合笔者多年的相关学习研究,对此课题进行了较系统深入的探究。首先讨论了饱和土不排水计算的总应力法与有效应力法及各自的局限,并从有限元基本方程阐述了孔隙水压的处理,指出不管采用何种方法均应注意区分两类孔隙水压和两种总应力,即“土水分算”。随后,审视了Skempton-Henkel超静水压计算公式对不同应力路径的计算准确性,将它与MC强度准则相结合构建了饱和土不排水强度模型,对等向固结与不等向固结下饱和土不排水强度特性进行了分析,可为实际工程计算中强度参数选取提供参考。建议实际不排水计算采用广义Tresca强度准则,针对采用MC强度准则按有效应力法进行不排水计算会有较大误差的问题,除指出应直接输入不排水强度外,还给出一种采用等代强度参数的处理方法。在上述讨论基础上,剖析了固结不排水强度指标(CU指标)的缺陷,指出仅当土中总应力路径与测定CU指标的试验中相同时,用此指标直接计算才能给出准确的结果,特别是对地基承载力问题直接用此指标计算会给出严重偏危险的结果。还对基坑工程中主动、被动土水压力采用CU指标并土水合算的问题进行了分析,建议了合理计算方法及相应公式;对发生不排水极限土压时的滑移面倾角这一业内多人深感困惑的问题也进行了探讨。最后,针对饱和地基承载力及短期沉降计算,剖析了业内现行方法的问题,在深入解读有关因素影响机理的基础上给出新的计算方法。所给承载力计算公式,可较准确统一计算排水和不排水条件下的承载力,能更好保证设计的安全经济;所给沉降计算新方法能较准确计算饱和地基的短期沉降,对地基的排水沉降也可望取得较好结果,值得进一步发展完善。 展开更多
关键词 饱和黏性土 不排水强度 超静水压 固结不排水强度指标 地基承载力 地基沉降
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部