期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Seismic response of tunnel under normal fault slips by shaking table test technique 被引量:17
1
作者 FAN Ling CHEN Jie-ling +3 位作者 PENG Shu-quan QI Bin-xi ZHOU Qi-wen WANG Fan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1306-1319,共14页
Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthqu... Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthquake. In this paper, a three-dimensional normal fault sliding device was designed, and a shaking table test was carried out to study tunnel seismic performance under normal fault slip. The results show that peak acceleration of lining is dominated by an existence of fault and direction of seismic excitation, not normal fault slip. And the incremental strains of lining in critical zone with 1.7 times fault thickness and centered in faults induced by normal fault slip and seismic excitation are larger than ones only by seismic excitation. And the incremental strains in critical zone increase with the increase of normal fault slip magnitude ranging from 0 to 2 mm. And normal fault slip results in a significant reduction of overall tunnel stiffness subjected to an earthquake. These experimental results provide a scientific reference for prevention and control measurement of tunnel damage under earthquake and normal fault slip. 展开更多
关键词 TUNNEL normal fault EARTHQUAKE fault slip shaking table test peak acceleration
在线阅读 下载PDF
Model test to investigate reasonable reactive artificial boundary in shaking table test with a rigid container 被引量:2
2
作者 LEI Ming-feng ZHOU Bo-cheng +3 位作者 LIN Yue-xiang CHEN Fu-dong SHI Cheng-hua PENG Li-min 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期210-220,共11页
When conducting dynamic tests of underground structure by a rigid container, reasonable boundary conditions are one of the essential factors related to the accuracy of test results, especially the artificial boundary ... When conducting dynamic tests of underground structure by a rigid container, reasonable boundary conditions are one of the essential factors related to the accuracy of test results, especially the artificial boundary perpendicular to the excitation direction. On the basis of numerous studies, shaking table tests with four different typical boundaries are performed in this study. The tests consider the seismic intensity and seismic wave types. Then, the simulation effects of the four boundary conditions are evaluated from four aspects as follows: the differential rate of peak acceleration, acceleration curve, similarity of Fourier frequency spectra, and uneven soil settlement in rigid containers. Results show that the simulation effects of the boundary conditions are not only affected by the nature of the boundary material but also related to the seismic intensity, types of seismic waves, and filter characteristic of the filling medium in containers. In comparison with the other three types of boundary condition, foamed polyethylene shows the best simulation effect and its effect decreases gradually with the increase in earthquake intensity. Finally, on the basis of existing studies, the evaluation criteria of boundary effect, the principle for the selection of boundary material type and the thickness of boundary material are discussed and summarized, and the corresponding design methods and suggestions are then provided. 展开更多
关键词 shaking table test artificial boundary conditions rigid container
在线阅读 下载PDF
Novel dynamic test system for simulating high-speed train moving on bridge under earthquake excitation 被引量:1
3
作者 LIU Han-yun YU Zhi-wu +1 位作者 GUO Wei JIANG Li-zhong 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2485-2501,共17页
China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of... China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of high speed trains moving on bridges when a strong earthquake happens.In the past decades,a bunch of theoretical and numerical studies have been conducted in the seismic dynamic field of high-speed railway.However,the effective dynamic test system for verifying the given method and theoretical results is still lacking.Therefore,a novel dynamic test system(DTS)consisting of a shaking table array and a train-pass-bridge reduced-scale model is proposed in this paper.Through some crucial technical problems discussion,the effectiveness of similar design scheme and the feasibility of reduced-scale DTS are elaborated,and then the detailed DTS structures are given and displayed as part-by-part.On this basis,the demonstration tests are conducted and compared with the numerical simulation.The results show that the proposed DTS is accurate and effective.Therefore,the DTS can provide a new physical simulation approach to study the high-speed train’s running safety on bridges under earthquakes and can also provide a reference for the construction of related systems. 展开更多
关键词 strong earthquake high-speed train shaking table test dynamic test system similar design BRIDGE
在线阅读 下载PDF
Dynamic response characteristics of super high-rise buildings subjected to long-period ground motions 被引量:4
4
作者 陈清军 袁伟泽 +1 位作者 李英成 曹丽雅 《Journal of Central South University》 SCIE EI CAS 2013年第5期1341-1353,共13页
Spectrum characteristics of different types of seismic waves and dynamic response characteristics of super high-rise building structures under long-period ground motions were comparatively analyzed. First, the ground ... Spectrum characteristics of different types of seismic waves and dynamic response characteristics of super high-rise building structures under long-period ground motions were comparatively analyzed. First, the ground response wave (named LS-R wave) of a soft soil site with deep deposit, taking long-period bedrock seismic record as input, was calculated by wave propagation method. After that, a TOMAKOMAI station long-period seismic record from the Tokachi-Oki earthquake and conventional E1-Centro wave were also chosen. Spectrum characteristics of these waves were analyzed and compared. Then, a series of shaking table tests were performed on a 1:50 scale super high-rise structural model under these seismic waves. Furthermore, numerical simulation of the prototype structure under these excitations was conducted, and structure damages under different intensive ground motions were discussed. The results show that: 1) Spectrum characteristics of ground response wave are significantly influenced by soft soil site with deep deposit, and the predominant period has an increasing trend. 2) The maximum acceleration amplification factor of the structure under the TOM wave is two times that under the E1-Centro wave; while the maximum displacement response of the structure under the TOM wave is 4.4 times that under the E1-Centro wave. Long-period ground motions show greater influences on displacement responses than acceleration responses for super high-rise building structures. 3) Most inelastic damage occurs at the upper 1/3 part of the super high-rise building when subjected to long-period ground motions. 展开更多
关键词 long-period ground motion super high-rise building shaking table model test numerical simulation spectrumcharacteristic analysis
在线阅读 下载PDF
Experimental and numerical analysis of submerged floating tunnel 被引量:2
5
作者 陈健云 李静 +1 位作者 孙胜男 苏志斌 《Journal of Central South University》 SCIE EI CAS 2012年第10期2949-2957,共9页
As a new type of structure which has never been built, submerged floating tunnel was studied mainly by numerical simulations. To further study the seismic response of a submerged floating tunnel, the first model exper... As a new type of structure which has never been built, submerged floating tunnel was studied mainly by numerical simulations. To further study the seismic response of a submerged floating tunnel, the first model experiment of submerged floating tunnel (SFT) under the earthquake was carried out on the unique underwater shaking table in China. The experimental results show that vertical excitation induces larger response than horizontal and different inclination degrees of the tether also cause different seismic responses. Subsequently, based on the fluid-structure interaction theory, the corresponding numerical model is established. And comparing the numerical results with the experimental results, those of shaking table test. Numerical model adopted is effective for it is shown that the numerical results are basically identical with dynamic response of SFT. 展开更多
关键词 submerged floating tunnel seismic response dynamic response shaking table test numerical simulation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部