Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry a...Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry and vaporize the sealing fluid, resulting in friction of boundary lubrication. These effects on face seals usually lead to excessive leakage and ultimately ren der the seal inoperable. In order to maintain the reliability of seals, high fri ction and unwanted wear must be avoided. Using the laser-texturing process to produce regular micro-surface structures is a fast and convenient technique compared to some more conventional etching or erosion technique currently used by the seal industry for various grooved face seals. Indeed, by using a pulse laser, better control is obtained on the geometr y, size and pore ratio of seal rings made of metallic or ceramic materials. In t his study, seal rings are made of silicon carbide and carbon. Mating faces of th e rings are polished and only silicon carbide rings are laser-textured. The las er texturing can be controlled to produce spherical pores at selected diameters, depths and pore ratio. The textured rings are then super-polished to remove th e bulges formed on the pores rims. After this process the average pore diameter, pore depth and pore ratio reach the predetermined parameter. Some untextured ri ngs are also treated to the same surface roughness and served as a reference for comparison of the textured rings. A special test rig is used to simulate a mech anical seal system and to measure the effect of the laser texturing on friction and seal performance. Tests are performed at various rotational speeds and vario us axial loads. Compared with the conventional mechanical seals, temperature rise, friction torq ue and friction coefficient of mechanical seals with laser-textured seal faces are much lower. These preliminary results show the potential of improving fricti on performance and increasing seal life with laser-textured seal faces.展开更多
To solve the problem of sealing between the barrel and the rubber ring of shell body during an launching process of aerodynamic extinguishing cannon, a rubber sealing model with bionic dimpled characteristics was esta...To solve the problem of sealing between the barrel and the rubber ring of shell body during an launching process of aerodynamic extinguishing cannon, a rubber sealing model with bionic dimpled characteristics was established based on the theory of bionic dimpled drag reduction and the principle of rubber sealing. In condition that the bionic dimpled characteristic diameters were 1, 2, 3, 4, and 5 mm, respectively, by numerical simulation, the influence of the installing compression of the rubber sealing ring on its surface stress and deformation was analyzed, and sealing performance of the rubber ring with different diameters of bionic dimpled was studied. The results show that the deformation of rubber ring appears prominent nonlinear characteristics when compression is increased from 1.5 mm to 2.5 ram. When the compression is 2.5 mm, the equivalent compression stress on the sealing areas of both sides of the rubber seal is greater than the working pressure of aerodynamic extinguishing cannon, which could meet the sealing requirement and would not cause leakage. So the rubber sealing ring with bionic dimpled surface possesses a good sealing characteristic and has no negative effect on the sealing of shell body; When the compression is 2.5 mm, the larger equivalent stress on the edge of sealing ring and the more even stress distribution in the high pressure area are generated due to the smaller compressive stress on the bionic dimple areas, which lays a foundation for the drag reduction characteristics of the shell body's rubber ring with bionic dimpled surface.展开更多
Bi2O3-ZnO-B2O3 system glass is a kind of lead-free low melting sealing glasses. The structure of Bi2O3-ZnO-B2O3 system low-melting sealing glass was investigated by DSC, FT-IR, XRD and SEM. The results show that with ...Bi2O3-ZnO-B2O3 system glass is a kind of lead-free low melting sealing glasses. The structure of Bi2O3-ZnO-B2O3 system low-melting sealing glass was investigated by DSC, FT-IR, XRD and SEM. The results show that with the increase of B2O3 content, the transition temperature Tg and softening temperature Tf of Bi2O3-ZnO-B2O3 system low-melting sealing glasses increase, which leads to the liquid phase precipitation temperature increasing and promotes the structure stability in the glass. With increasing the heat treatment temperature, a large number of liquid phases appear in samples and the sinter efficiency of the samples increases. The FT-IR spectra of the glasses show the presence of some bands that are assigned to vibrations of Bi--O bond from [BO3] pyramidal and [BiO6] octahedral units and B--O from [BO3] and [BO4] units. With the decrease of B203 content, the crystallization tendency of the glass increases. In glass samples Bl and B〉 crystallization starts at 460 ℃ and 540 ℃, respectively. Both of them precipitate Bi24B2O39 phases.展开更多
Maintaining caprock integrity is prerequisite for hydrocarbon accumulation. And gypsolyte caprock integrity is mainly affected by fracturing. Composition, damage behavior and mechanical strength of Paleocene Artashi F...Maintaining caprock integrity is prerequisite for hydrocarbon accumulation. And gypsolyte caprock integrity is mainly affected by fracturing. Composition, damage behavior and mechanical strength of Paleocene Artashi Formation gypsolyte rock that seals significant petroleum in the Kashi Sag of Tarim Basin had been revealed via X-ray diffraction and triaxial compression test. The results indicate the Artashi Formation can be lithologically divided into the lower and upper lithologic members. The lower member comprises gypsum as the dominant mineral, and the cohesion and friction coefficient are 8 MPa and 0.315, respectively. Similarly, the upper lithologic member consists mainly of anhydrite at the cohesion and coefficient of internal friction values of 18 MPa and 0.296. Given that the failure criterion and brittle-ductile transition factors during burial, the sealing integrity of Artashi Formation can be quantized for seven different stages. The reservoirs at the bottom of Artashi Formation caprock buried from 2285 m to 3301 m are expected to be the most favorable exploration target in the Kashi Sag.展开更多
Caprocks play an important role in the trapping of coalbed methane(CBM)reservoirs.To study the sealing capacities of caprocks,five samples with different lithologies of Neogene clayrock,Paleogene redbeds,Permian sands...Caprocks play an important role in the trapping of coalbed methane(CBM)reservoirs.To study the sealing capacities of caprocks,five samples with different lithologies of Neogene clayrock,Paleogene redbeds,Permian sandstone,Permian mudstone and Permian siltstone were collected and tested using experimental methods of microstructure observation,pore structure measurement and diffusion properties determination.Results indicate that with denser structures,lower porosities,much more developed micropores/transition pores and higher pore/throat ratios,mudstone and siltstone have the more ideal sealing capacities for CBM preservation when comparing to other kinds of caprocks;the methane diffusion coefficients of mudstone/siltstone are about 6 times higher than sandstone and almost 90 times higher than clayrock/redbeds.To further estimate the CBM escape through caprocks,a one-dimensional CBM diffusion model is derived.Modeling calculation result demonstrates that under the same thickness,the CBM sealing abilities of mudstone/siltstone are almost 100 times higher than those of clayrock/redbeds,and nearly 17 times higher than sandstone,which indicates that the coal seam below caprocks like clayrock,redbeds or sandstone may suffer stronger CBM diffusion effect than that below mudstone or siltstone.Such conclusion is verified by the case study from III3 District,Xutuan Colliery,where the coal seam capped by Paleogene redbeds has a much lower CBM content than that capped by the Permian strata like mudstone,siltstone and sandstone.展开更多
Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated bas...Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated based on the theory of hydrodynamic lubrication.N-S equation,energy equation,viscosity-temperature equation and vapor transport equation were solved with the finite volume method by using Fluent software,which was performed to analyze the influence of the viscosity-temperature and cavitation effect on hydrodynamic lubrication failure of the film.The research demonstrates that it will lead to the significant difference of the temperature field by considering the coupling of temperature and viscosity.When the film thickness decreases and the rotating speed rises,cavitation regions and viscous friction heat increases,the opening force of the film is also enhanced.However,the growth rate is restricted to the cavitation regions and viscous friction heat,and the opening force begins to decline to a certain extent,and thereby being insufficient to open the surfaces of the seals and leading to the failure of automatic adjustment function and severe wear,lubrication failure occurrs.Through comprehensive research on the influences of viscosity-temperature and cavitation effect on hydrodynamic lubrication performance,the theories of failure and design of upstream pumping mechanical seal are further developed.展开更多
文摘Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry and vaporize the sealing fluid, resulting in friction of boundary lubrication. These effects on face seals usually lead to excessive leakage and ultimately ren der the seal inoperable. In order to maintain the reliability of seals, high fri ction and unwanted wear must be avoided. Using the laser-texturing process to produce regular micro-surface structures is a fast and convenient technique compared to some more conventional etching or erosion technique currently used by the seal industry for various grooved face seals. Indeed, by using a pulse laser, better control is obtained on the geometr y, size and pore ratio of seal rings made of metallic or ceramic materials. In t his study, seal rings are made of silicon carbide and carbon. Mating faces of th e rings are polished and only silicon carbide rings are laser-textured. The las er texturing can be controlled to produce spherical pores at selected diameters, depths and pore ratio. The textured rings are then super-polished to remove th e bulges formed on the pores rims. After this process the average pore diameter, pore depth and pore ratio reach the predetermined parameter. Some untextured ri ngs are also treated to the same surface roughness and served as a reference for comparison of the textured rings. A special test rig is used to simulate a mech anical seal system and to measure the effect of the laser texturing on friction and seal performance. Tests are performed at various rotational speeds and vario us axial loads. Compared with the conventional mechanical seals, temperature rise, friction torq ue and friction coefficient of mechanical seals with laser-textured seal faces are much lower. These preliminary results show the potential of improving fricti on performance and increasing seal life with laser-textured seal faces.
基金Project(51275102)supported by the National Natural Science Foundation of ChinaProject(159070220011)supported by the Science and Technology Innovative Research Programs Foundation of Harbin city,ChinaProject(HEUCF110702)supported by the Fundamental Research Funds for the Central Universities of China
文摘To solve the problem of sealing between the barrel and the rubber ring of shell body during an launching process of aerodynamic extinguishing cannon, a rubber sealing model with bionic dimpled characteristics was established based on the theory of bionic dimpled drag reduction and the principle of rubber sealing. In condition that the bionic dimpled characteristic diameters were 1, 2, 3, 4, and 5 mm, respectively, by numerical simulation, the influence of the installing compression of the rubber sealing ring on its surface stress and deformation was analyzed, and sealing performance of the rubber ring with different diameters of bionic dimpled was studied. The results show that the deformation of rubber ring appears prominent nonlinear characteristics when compression is increased from 1.5 mm to 2.5 ram. When the compression is 2.5 mm, the equivalent compression stress on the sealing areas of both sides of the rubber seal is greater than the working pressure of aerodynamic extinguishing cannon, which could meet the sealing requirement and would not cause leakage. So the rubber sealing ring with bionic dimpled surface possesses a good sealing characteristic and has no negative effect on the sealing of shell body; When the compression is 2.5 mm, the larger equivalent stress on the edge of sealing ring and the more even stress distribution in the high pressure area are generated due to the smaller compressive stress on the bionic dimple areas, which lays a foundation for the drag reduction characteristics of the shell body's rubber ring with bionic dimpled surface.
基金Project(50272043) supported by the National Natural Science Foundation of China
文摘Bi2O3-ZnO-B2O3 system glass is a kind of lead-free low melting sealing glasses. The structure of Bi2O3-ZnO-B2O3 system low-melting sealing glass was investigated by DSC, FT-IR, XRD and SEM. The results show that with the increase of B2O3 content, the transition temperature Tg and softening temperature Tf of Bi2O3-ZnO-B2O3 system low-melting sealing glasses increase, which leads to the liquid phase precipitation temperature increasing and promotes the structure stability in the glass. With increasing the heat treatment temperature, a large number of liquid phases appear in samples and the sinter efficiency of the samples increases. The FT-IR spectra of the glasses show the presence of some bands that are assigned to vibrations of Bi--O bond from [BO3] pyramidal and [BiO6] octahedral units and B--O from [BO3] and [BO4] units. With the decrease of B203 content, the crystallization tendency of the glass increases. In glass samples Bl and B〉 crystallization starts at 460 ℃ and 540 ℃, respectively. Both of them precipitate Bi24B2O39 phases.
基金Project(41672121)supported by the National Natural Science Foundation of ChinaProject(D1438)supported by the China Geological Survey
文摘Maintaining caprock integrity is prerequisite for hydrocarbon accumulation. And gypsolyte caprock integrity is mainly affected by fracturing. Composition, damage behavior and mechanical strength of Paleocene Artashi Formation gypsolyte rock that seals significant petroleum in the Kashi Sag of Tarim Basin had been revealed via X-ray diffraction and triaxial compression test. The results indicate the Artashi Formation can be lithologically divided into the lower and upper lithologic members. The lower member comprises gypsum as the dominant mineral, and the cohesion and friction coefficient are 8 MPa and 0.315, respectively. Similarly, the upper lithologic member consists mainly of anhydrite at the cohesion and coefficient of internal friction values of 18 MPa and 0.296. Given that the failure criterion and brittle-ductile transition factors during burial, the sealing integrity of Artashi Formation can be quantized for seven different stages. The reservoirs at the bottom of Artashi Formation caprock buried from 2285 m to 3301 m are expected to be the most favorable exploration target in the Kashi Sag.
基金Project(2016YFC0801608) supported by the National Key Research and Development Plan,ChinaProject(51574148) supported by the National Natural Science Foundation of China
文摘Caprocks play an important role in the trapping of coalbed methane(CBM)reservoirs.To study the sealing capacities of caprocks,five samples with different lithologies of Neogene clayrock,Paleogene redbeds,Permian sandstone,Permian mudstone and Permian siltstone were collected and tested using experimental methods of microstructure observation,pore structure measurement and diffusion properties determination.Results indicate that with denser structures,lower porosities,much more developed micropores/transition pores and higher pore/throat ratios,mudstone and siltstone have the more ideal sealing capacities for CBM preservation when comparing to other kinds of caprocks;the methane diffusion coefficients of mudstone/siltstone are about 6 times higher than sandstone and almost 90 times higher than clayrock/redbeds.To further estimate the CBM escape through caprocks,a one-dimensional CBM diffusion model is derived.Modeling calculation result demonstrates that under the same thickness,the CBM sealing abilities of mudstone/siltstone are almost 100 times higher than those of clayrock/redbeds,and nearly 17 times higher than sandstone,which indicates that the coal seam below caprocks like clayrock,redbeds or sandstone may suffer stronger CBM diffusion effect than that below mudstone or siltstone.Such conclusion is verified by the case study from III3 District,Xutuan Colliery,where the coal seam capped by Paleogene redbeds has a much lower CBM content than that capped by the Permian strata like mudstone,siltstone and sandstone.
基金National Natural Science Foundation of China(Grant No.51279067)
文摘Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated based on the theory of hydrodynamic lubrication.N-S equation,energy equation,viscosity-temperature equation and vapor transport equation were solved with the finite volume method by using Fluent software,which was performed to analyze the influence of the viscosity-temperature and cavitation effect on hydrodynamic lubrication failure of the film.The research demonstrates that it will lead to the significant difference of the temperature field by considering the coupling of temperature and viscosity.When the film thickness decreases and the rotating speed rises,cavitation regions and viscous friction heat increases,the opening force of the film is also enhanced.However,the growth rate is restricted to the cavitation regions and viscous friction heat,and the opening force begins to decline to a certain extent,and thereby being insufficient to open the surfaces of the seals and leading to the failure of automatic adjustment function and severe wear,lubrication failure occurrs.Through comprehensive research on the influences of viscosity-temperature and cavitation effect on hydrodynamic lubrication performance,the theories of failure and design of upstream pumping mechanical seal are further developed.