Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai...Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.展开更多
The cost and safety of geotechnical engineering are highly depending on the accuracy of soil shear strength parameters.There are three methods often used to estimate soil shear strength parameters,i.e.,moment method,3...The cost and safety of geotechnical engineering are highly depending on the accuracy of soil shear strength parameters.There are three methods often used to estimate soil shear strength parameters,i.e.,moment method,3-sigma rule and linear regression method.In this study,the accuracy of these three methods is compared.Traditional linear regression method(LRM)can only offer the mean of shear strength parameters.Some engineers misuse the standard error of shear strength indexes as the standard deviations.Such misuse may highly underestimate the uncertainty and induce high risk to the geotechnical design.A modified LRM is proposed to determine both the mean and variance of shear strength parameters.The moment method,three-sigma rule and LRM are used to analyze the tri-axial test data in Xiaolangdi Hydraulic Project and three numerical shear strength tests.The results demonstrate that:1)The modified LRM can offer the most accurate estimation to shear strength parameters;2)A dimensionless formula is much preferred in LRM rather than a dimensional formula.The stress ratio formula is much better than stress relation in the shear strength parameter analysis.The proposed method is applicable to shear strength parameter analysis for tri-axial test data,direct shear test and the un-drained shear strength test of stratified clay.展开更多
基金Project(2017G006-N)supported by the Project of Science and Technology Research and Development Program of China Railway Corporation。
文摘Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.
基金Project(2017YFC0404803) supported by the National Key Research and Development Program of ChinaProject(51678040) supported by the National Natural Science Foundation of ChinaProject(8192034) supported by the Beijing Municipal Natural Science Foundation,China
文摘The cost and safety of geotechnical engineering are highly depending on the accuracy of soil shear strength parameters.There are three methods often used to estimate soil shear strength parameters,i.e.,moment method,3-sigma rule and linear regression method.In this study,the accuracy of these three methods is compared.Traditional linear regression method(LRM)can only offer the mean of shear strength parameters.Some engineers misuse the standard error of shear strength indexes as the standard deviations.Such misuse may highly underestimate the uncertainty and induce high risk to the geotechnical design.A modified LRM is proposed to determine both the mean and variance of shear strength parameters.The moment method,three-sigma rule and LRM are used to analyze the tri-axial test data in Xiaolangdi Hydraulic Project and three numerical shear strength tests.The results demonstrate that:1)The modified LRM can offer the most accurate estimation to shear strength parameters;2)A dimensionless formula is much preferred in LRM rather than a dimensional formula.The stress ratio formula is much better than stress relation in the shear strength parameter analysis.The proposed method is applicable to shear strength parameter analysis for tri-axial test data,direct shear test and the un-drained shear strength test of stratified clay.