The effect of various dosages of dolomites on the reduction swelling property of iron ore pellets was studied. Experimental results show that the reduction swelling index(RSI) decreases from 13.35% to 4.0%, while the ...The effect of various dosages of dolomites on the reduction swelling property of iron ore pellets was studied. Experimental results show that the reduction swelling index(RSI) decreases from 13.35% to 4.0%, while the porosity of roasted pellets increases from 35% to 40% with increasing the dolomite dosage from 0 to 10.5%. Meanwhile, the content of magnesium ferrite with high melting temperature, as well as the stability of magnetite(Fe3 O4) in the roasted pellets, increases with increasing the magnesium oxide(MgO) content from dolomite. The reasons for the decrease of RSI rely on the absence of crystal transformation from Fe2 O3 to Fe3 O4, the increased porosity of roasted pellet, and the suppression of phase transition of 2CaO·SiO2 resulted from the incorporation of magnesium into calcium silicate.展开更多
One kind of facile coal-based direct reduction process is using hot preheated pellets for reduction in grate kiln. In this work, effects of reduction parameters on swelling index of hot preheated pellets were investig...One kind of facile coal-based direct reduction process is using hot preheated pellets for reduction in grate kiln. In this work, effects of reduction parameters on swelling index of hot preheated pellets were investigated by photographic technique under isothermal conditions. Experimental results show that swelling index of pellets is firstly increased then gradually decreased with increasing reduction time, while that is found to be an obvious decrease from 175 % to 30% with the variation of temperature from 900℃ to 1100℃. Results of XRD combined with SEM reveal that swelling behavior of pellets is decided by structure of newly formed metal iron grains. The formation and growth of fibers iron grains promote the increase in volume. Low temperature and low CO content are favored to the formation and orientated growth of metal iron grains in the one step process.展开更多
基金Project(50725416) supported by the National Natural Science for Distinguished Young Scholars of China
文摘The effect of various dosages of dolomites on the reduction swelling property of iron ore pellets was studied. Experimental results show that the reduction swelling index(RSI) decreases from 13.35% to 4.0%, while the porosity of roasted pellets increases from 35% to 40% with increasing the dolomite dosage from 0 to 10.5%. Meanwhile, the content of magnesium ferrite with high melting temperature, as well as the stability of magnetite(Fe3 O4) in the roasted pellets, increases with increasing the magnesium oxide(MgO) content from dolomite. The reasons for the decrease of RSI rely on the absence of crystal transformation from Fe2 O3 to Fe3 O4, the increased porosity of roasted pellet, and the suppression of phase transition of 2CaO·SiO2 resulted from the incorporation of magnesium into calcium silicate.
基金Projects(51404213,51404214,51674225)supported by the National Natural Science Fundation of ChinaProject(1421324065)supported by the Development Fund for Outstanding Young Teachers of Zhengzhou University,China
文摘One kind of facile coal-based direct reduction process is using hot preheated pellets for reduction in grate kiln. In this work, effects of reduction parameters on swelling index of hot preheated pellets were investigated by photographic technique under isothermal conditions. Experimental results show that swelling index of pellets is firstly increased then gradually decreased with increasing reduction time, while that is found to be an obvious decrease from 175 % to 30% with the variation of temperature from 900℃ to 1100℃. Results of XRD combined with SEM reveal that swelling behavior of pellets is decided by structure of newly formed metal iron grains. The formation and growth of fibers iron grains promote the increase in volume. Low temperature and low CO content are favored to the formation and orientated growth of metal iron grains in the one step process.