In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave pow...In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.展开更多
A circular and sustainable economy for the private transport sector requires a holistic view of the emitted CO_(2) emissions.Looking at the energy supplied to the vehicle in terms of a circular economy leads to defoss...A circular and sustainable economy for the private transport sector requires a holistic view of the emitted CO_(2) emissions.Looking at the energy supplied to the vehicle in terms of a circular economy leads to defossilisation.The remaining energy sources or forms are renewable electric energy,green hydrogen and renewable fuels.A holistic view of the CO_(2) emissions of these energy sources and forms and the resulting powertrain technologies must take into account all cradle-to-grave emissions for both the vehicle and the energy supply.In order to compare the different forms of energy,the three most relevant forms of powertrain technology are considered and a configuration is chosen that allows for an appropriate comparison.For this purpose,data from the FVV project“Powertrain 2040”are used[1]and combined with research data on the energy supply chain for passenger cars.The three comparable powertrain configurations are a battery electric vehicle,a fuel cell electric vehicle and an internal combustion engine hybrid vehicle fueled with electric fuel.First,the three selected powertrain configurations are presented in terms of their performance,weight,technology and other characteristics.A comparative analysis is carried out for different CO_(2) emissions of the electricity mix.The electricity mix is used for both the production of the vehicle and the energy.The results are presented in the form of cradle-to-wheel emissions,which consider the total CO_(2) emissions of the vehicle over its life cycle.Finally,the results are analyzed and discussed to determine which powertrain technology fits best into which energy sector CO_(2) emissions window.展开更多
To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and co...To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.展开更多
The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys th...The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.展开更多
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is...When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.展开更多
To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a b...To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.展开更多
[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,...[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,with multi-channel slow-wave structures(SWSs)forming the foundation for their realization in high-power vacuum electronic devices.[Purpose]To provide design insights for multi-channel TWTs and simultaneously enhance their output power,a W-band folded-waveguide TWT with dual electron beams and H-plane power combining was proposed.[Methods]Three-dimensional electromagnetic simulations in CST were conducted to verify the highfrequency characteristics,electric field distribution,and amplification performance of the proposed SWS,thereby confirming the validity of the design.[Results]Results indicate that the designed TWT achieves a transmission bandwidth of 10 GHz.With an electron beam voltage of 17.9 kV and a current of 0.35 A,the output power reaches 450 W at 94 GHz,corresponding to an efficiency of 7.18%and a gain of 23.5 dB.Moreover,under fixed beam voltage and current,the TWT delivers over 200 W output power across 91–99 GHz,with a 3 dB bandwidth of 91–98.5 GHz.The particle voltage distribution after modulation further validates the mode analysis.[Conclusions]These results demonstrate the feasibility of compact dual-beam power-combining structures and provide useful guidance for the design of future multi-channel TWTs.展开更多
The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the rel...The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.展开更多
Currently,the International Maritime Organization(IMO)has approved and implemented the assessment requirement for Minimum Propulsion Power(MPP)of ships in adverse sea conditions.The assessment method and relevant infl...Currently,the International Maritime Organization(IMO)has approved and implemented the assessment requirement for Minimum Propulsion Power(MPP)of ships in adverse sea conditions.The assessment method and relevant influence factors will have a vital impact on ship's design and operation.On the other hand,MPP is essentially a criterion for manoeuvring safety at actual seas.However,the practical assessment methods adopted in IMO guidelines do not directly and accurately account for ship's coursekeeping ability in severe seas.A time-domain comprehensive method with supplementary course-keeping ability criteria has been proposed in the authors'preliminary research.Based on an updated mathematical model and criteria,this paper presents more detailed elaborations,results and discussions on the time-domain method,including the comparative analyses with a power line method and two steady-state equilibrium methods based on IMO guidelines and draft.Discussions on the influences of key factors,involving criterion conditions and calculation parameters,are also presented.The results indicate that different methods exhibit varying advantages and complexity in MPP assessment,thus constituting a multi-level assessment framework for MPP.In particular,the time-domain comprehensive assessment has a higher accuracy with more realistic description of manoeuvre behaviors,capable of offering a solution for the ships that cannot meet other assessments,or for the assessment requiring additional course-keeping ability.Furthermore,an expanded range of wave direction sets a stricter but potentially necessary requirement,while using the self-propulsion factors at low speeds can eliminate the unnecessary conservation of assessment result caused by those at design speed.展开更多
This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ...This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.展开更多
A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment ...A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP.展开更多
Capacitor-based pulsed power supply(PPS)is widely used in fields related to electromagnetic launch,plasma,and materials'synthesis,modification and processing.As industrial applications place higher requirements on...Capacitor-based pulsed power supply(PPS)is widely used in fields related to electromagnetic launch,plasma,and materials'synthesis,modification and processing.As industrial applications place higher requirements on compact and portable pulsed power supplies,the National Key Laboratory of Transient Physics(NKLTP)recently developed a pulsed power supply consisting of a set of compact pulse-forming units(PFU),each with a capacitor energy storage of 220 kJ.This integrated PPS comes with a complete system configuration,a miniature compact structure,a high rate of repetition,and high power,with energy storage density exceeding 1.2 MJ/m^(3).This paper describes the device-level design of the unit,the system layout,the control system,the thermal management system,and the experimental results of the pulsed power supply.The experimental results verified the good reliability of the PPS at high repetition rates with each unit module delivering an output current of more than 100 kA.Additionally,flexible current pulse shapes can be formed by setting the charging voltage and the trigger sequence of the PFUs.The pulse forming network(PFN)developed from these PFUs was successfully applied to electromagnetic launch.展开更多
With the increasing of electric vehicles(EVs)penetration in power grids,the charging of EVs will have significant impacts on power system planning and operation.It is necessary to note that the majority of EVs are not...With the increasing of electric vehicles(EVs)penetration in power grids,the charging of EVs will have significant impacts on power system planning and operation.It is necessary to note that the majority of EVs are not in use in most ofthe time in a day.Therefore,the onboard batteries can be utilized as energy storage devices.This article reviews and discusses the current related research in the following areas.展开更多
Power load forecasting accuracy related to the development of the power system. There were so many factors influencing the power load, but their effects were not the same and what factors played a leading role could n...Power load forecasting accuracy related to the development of the power system. There were so many factors influencing the power load, but their effects were not the same and what factors played a leading role could not be determined empirically. Based on the analysis of the principal component, the paper forecasted the demands of power load with the method of the multivariate linear regression model prediction. Took the rural power grid load for example, the paper analyzed the impacts of different factors on power load, selected the forecast methods which were appropriate for using in this area, forecasted its 2014-2018 electricity load, and provided a reliable basis for grid planning.展开更多
A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm...A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.展开更多
On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UP...On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems.展开更多
文摘In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.
文摘A circular and sustainable economy for the private transport sector requires a holistic view of the emitted CO_(2) emissions.Looking at the energy supplied to the vehicle in terms of a circular economy leads to defossilisation.The remaining energy sources or forms are renewable electric energy,green hydrogen and renewable fuels.A holistic view of the CO_(2) emissions of these energy sources and forms and the resulting powertrain technologies must take into account all cradle-to-grave emissions for both the vehicle and the energy supply.In order to compare the different forms of energy,the three most relevant forms of powertrain technology are considered and a configuration is chosen that allows for an appropriate comparison.For this purpose,data from the FVV project“Powertrain 2040”are used[1]and combined with research data on the energy supply chain for passenger cars.The three comparable powertrain configurations are a battery electric vehicle,a fuel cell electric vehicle and an internal combustion engine hybrid vehicle fueled with electric fuel.First,the three selected powertrain configurations are presented in terms of their performance,weight,technology and other characteristics.A comparative analysis is carried out for different CO_(2) emissions of the electricity mix.The electricity mix is used for both the production of the vehicle and the energy.The results are presented in the form of cradle-to-wheel emissions,which consider the total CO_(2) emissions of the vehicle over its life cycle.Finally,the results are analyzed and discussed to determine which powertrain technology fits best into which energy sector CO_(2) emissions window.
基金supported by the National Natural Science Foundation of China(61931015,62071335,62250024)the Natural Science Foundation of Hubei Province of China(2021CFA002)+1 种基金the Fundamental Research Funds for the Central Universities of China(2042022dx0001)the Science and Technology Program of Shenzhen(JCYJ20170818112037398).
文摘To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.
基金Entrusted Fund of National Institute of Information and Communications Technology(NICT),Japan(JPJ012368C02401)。
文摘The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.
基金Supported by the Major Science and Technology Projects in Jilin Province and Changchun City(20220301010GX).
文摘When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics.
文摘To investigate the overall performance of reverse energy bypass scramjet,firstly a variable spe⁃cific heat method combined with a chemical balance calculation module for combustion products were used to es⁃tablish a benchmark scramjet performance evaluation model.Based on the test data of typical flying point of Mach 7 with the altitude of 29 km,the reliability of the model was verified.The deviations of parameters such as the to⁃tal pressure loss of combustor between the model and the test data were analyzed.Furtherly,an analytical method for post-combustion magnetohydrodynamic power generation was established;by embedding the above method into the overall performance evaluation model,performance prediction considering the power generation effect was realized.Finally,based on the above model,variety regulations of the inlet and the outlet parameters of the power generation channel and performance parameters including the engine specific impulse and the unit thrust under different enthalpy extraction ratios and load factors were analyzed.It could be concluded that the model can reliably predict the variations of key parameters.As the value of the load factor increases,the value of the conduc⁃tivity required to reach the specified enthalpy extraction ratio first decreases and then increases,which is approxi⁃mately parabolic.In order to reduce the demand for the gas conductivity for MHD power generation,the load fac⁃tor should be around 0.5.When the load factor is 0.4 and the magnetic induction intensity is 2.5 T,if the enthalpy extraction ratio reaches 0.5%,the engine specific impulse performance reduces about 3.58%.
基金National Key Research and Development Program of China(2022YFF0707602)National Natural Science Foundation of China(62471097,62471115,62471101)National Natural Science Foundation of Sichuan(2025ZNSFSC0537)。
文摘[Background]Traveling-wave tubes(TWTs)are widely applied in radar,imaging,and military systems owing to their excellent amplification characteristics.Miniaturization and integration are critical to the future of TWTs,with multi-channel slow-wave structures(SWSs)forming the foundation for their realization in high-power vacuum electronic devices.[Purpose]To provide design insights for multi-channel TWTs and simultaneously enhance their output power,a W-band folded-waveguide TWT with dual electron beams and H-plane power combining was proposed.[Methods]Three-dimensional electromagnetic simulations in CST were conducted to verify the highfrequency characteristics,electric field distribution,and amplification performance of the proposed SWS,thereby confirming the validity of the design.[Results]Results indicate that the designed TWT achieves a transmission bandwidth of 10 GHz.With an electron beam voltage of 17.9 kV and a current of 0.35 A,the output power reaches 450 W at 94 GHz,corresponding to an efficiency of 7.18%and a gain of 23.5 dB.Moreover,under fixed beam voltage and current,the TWT delivers over 200 W output power across 91–99 GHz,with a 3 dB bandwidth of 91–98.5 GHz.The particle voltage distribution after modulation further validates the mode analysis.[Conclusions]These results demonstrate the feasibility of compact dual-beam power-combining structures and provide useful guidance for the design of future multi-channel TWTs.
基金supported by the Education and Teaching Research Project of Universities in Fujian Province(FBJY20230167).
文摘The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.
文摘Currently,the International Maritime Organization(IMO)has approved and implemented the assessment requirement for Minimum Propulsion Power(MPP)of ships in adverse sea conditions.The assessment method and relevant influence factors will have a vital impact on ship's design and operation.On the other hand,MPP is essentially a criterion for manoeuvring safety at actual seas.However,the practical assessment methods adopted in IMO guidelines do not directly and accurately account for ship's coursekeeping ability in severe seas.A time-domain comprehensive method with supplementary course-keeping ability criteria has been proposed in the authors'preliminary research.Based on an updated mathematical model and criteria,this paper presents more detailed elaborations,results and discussions on the time-domain method,including the comparative analyses with a power line method and two steady-state equilibrium methods based on IMO guidelines and draft.Discussions on the influences of key factors,involving criterion conditions and calculation parameters,are also presented.The results indicate that different methods exhibit varying advantages and complexity in MPP assessment,thus constituting a multi-level assessment framework for MPP.In particular,the time-domain comprehensive assessment has a higher accuracy with more realistic description of manoeuvre behaviors,capable of offering a solution for the ships that cannot meet other assessments,or for the assessment requiring additional course-keeping ability.Furthermore,an expanded range of wave direction sets a stricter but potentially necessary requirement,while using the self-propulsion factors at low speeds can eliminate the unnecessary conservation of assessment result caused by those at design speed.
基金Supported by National Science Foundation of China(11971027,12171497)。
文摘This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.
基金supported by the National Social Science Fund of China(Grand No.21XTJ001).
文摘A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP.
基金financial support from the National Key Laboratory of Transient Physics,Nanjing University of Science and Technology(Grant No.6142604230101)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant Nos.KYCX20_0321 and KYCX20_0322).
文摘Capacitor-based pulsed power supply(PPS)is widely used in fields related to electromagnetic launch,plasma,and materials'synthesis,modification and processing.As industrial applications place higher requirements on compact and portable pulsed power supplies,the National Key Laboratory of Transient Physics(NKLTP)recently developed a pulsed power supply consisting of a set of compact pulse-forming units(PFU),each with a capacitor energy storage of 220 kJ.This integrated PPS comes with a complete system configuration,a miniature compact structure,a high rate of repetition,and high power,with energy storage density exceeding 1.2 MJ/m^(3).This paper describes the device-level design of the unit,the system layout,the control system,the thermal management system,and the experimental results of the pulsed power supply.The experimental results verified the good reliability of the PPS at high repetition rates with each unit module delivering an output current of more than 100 kA.Additionally,flexible current pulse shapes can be formed by setting the charging voltage and the trigger sequence of the PFUs.The pulse forming network(PFN)developed from these PFUs was successfully applied to electromagnetic launch.
文摘With the increasing of electric vehicles(EVs)penetration in power grids,the charging of EVs will have significant impacts on power system planning and operation.It is necessary to note that the majority of EVs are not in use in most ofthe time in a day.Therefore,the onboard batteries can be utilized as energy storage devices.This article reviews and discusses the current related research in the following areas.
基金Supported by the Science and Technology Research Project Fund of Provincial Department of Education(12531004)Project of Heilongjiang Leading Talent Echelon Talented(2012)
文摘Power load forecasting accuracy related to the development of the power system. There were so many factors influencing the power load, but their effects were not the same and what factors played a leading role could not be determined empirically. Based on the analysis of the principal component, the paper forecasted the demands of power load with the method of the multivariate linear regression model prediction. Took the rural power grid load for example, the paper analyzed the impacts of different factors on power load, selected the forecast methods which were appropriate for using in this area, forecasted its 2014-2018 electricity load, and provided a reliable basis for grid planning.
文摘A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.
文摘On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems.