期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Phase composition, transition and structure stability of functionally graded cemented carbide with dual phase structure 被引量:2
1
作者 张立 陈述 +3 位作者 熊湘君 贺跃辉 黄伯云 张传福 《Journal of Central South University of Technology》 EI 2007年第2期149-152,共4页
The phase composition, phase transition and phase structure transformation of the wire-cut section of functionally graded WC-Co cemented carbide with dual phase structure were investigated by XRD phase analysis. It is... The phase composition, phase transition and phase structure transformation of the wire-cut section of functionally graded WC-Co cemented carbide with dual phase structure were investigated by XRD phase analysis. It is shown that the composition of η phase in the core zone is Co_3W_3C (M_6 C type). The structure of cobalt based solid solution binder phase is fcc type. At the cooling stage of the sintering process, the phase transition of η phase, i.e. M_6C→M_12C and the martensitic phase transition of the cobalt based solid solution binder phase, i.e. fcc→hcp are suppressed, which facilitates the strengthening of the alloy. Because the instantaneous temperature of the discharge channel is as high as 10 000 ℃ during the wire cutting process, the processed surface is oxidized. Nevertheless, the oxide layer thickness is in micro grade. In the oxide film, η phase is decomposed into W_2C and CoO, and cobalt based solid solution binder is selectively oxidized, while WC remains stable due to the existence of carbon containing liquid organic cutting medium. 展开更多
关键词 cemented carbide dual phase structure functionally graded material phase identification fracture toughness testing
在线阅读 下载PDF
Pressureless Sintered 3Y-TZP/20%Al_2O_3 Composite Ceramic
2
作者 YIN Bang yao,WANG Ling sen,LIN Jian liang,ZHANG Jing shen,FAN Yi (State Key Laboratory for Powder Metallurgy, Central South University of Technology, Changsha 410083, China) 《Journal of Central South University》 SCIE EI CAS 2000年第1期12-14,共3页
Nanometer 3Y TZP/20%Al 2O 3 (mass fraction) composite powders prepared by the chemical coprecipitation method were pressureless sintered at 1550 ℃ for 2 h. Effects of calcining temperatures at 800 ℃, 1 000 ℃, and 1... Nanometer 3Y TZP/20%Al 2O 3 (mass fraction) composite powders prepared by the chemical coprecipitation method were pressureless sintered at 1550 ℃ for 2 h. Effects of calcining temperatures at 800 ℃, 1 000 ℃, and 1 200 ℃ on phase structure, relative density, and Vicker′s hardness of the sintered bodies were studied. The results show that 1 000 ℃ was the optimal calcining temperature,and the powder calcined was composed of tetragonal zirconia with the Scherrer crystalline size of 6.3 nm. The relative density was up to 98.5% under pressureless sintering, and the sintered body was t ZrO 2(without m ZrO 2)+α Al 2O 3 with the average size of 0.4 μm. 展开更多
关键词 pressureless sintering 3Y-TZP/20%Al_2O_3 COMPOSITE phase structure
在线阅读 下载PDF
Structural evolution and stability of mechanically alloyed Fe-Ni nanocrystalline
3
作者 陈资 刘奇正 +1 位作者 孟庆平 戎咏华 《Journal of Central South University of Technology》 EI 2005年第4期389-392,共4页
The structural evolution and stability of Fe100-xNix(x= 10, 20, 35, 50) alloys prepared by mechanical alloying were investigated through X-ray diffraction analysis and transmission electron microscopy. The intrinsic... The structural evolution and stability of Fe100-xNix(x= 10, 20, 35, 50) alloys prepared by mechanical alloying were investigated through X-ray diffraction analysis and transmission electron microscopy. The intrinsic conditions of preparation determining phase stability in nanocrystalline were clarified. After being milled for 120 h, the powders of Fego Ni10 and Fe80 Ni20 consist of a single α(bcc) phase, Fe30 Ni30 powders are a single γ(fcc), and for Fe65 Ni35 powders there is co-existence of α and γ phases. The as-milled Fe80 Ni20 powders annealed at 680℃ exhibits the stability of high-temperature γ phase at room temperature, which is consistent with the theoretical prediction. 展开更多
关键词 mechanical alloying t Fe-Ni nanocrystalline structural evolutiont phase stability martensitic transformation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部