In this paper, we discuss feedback control of a class of delay chaotic maps. Our aim is to drive the chaotic maps to its initially unstable fixed points by using linear and nonlinear state feedback control. The contro...In this paper, we discuss feedback control of a class of delay chaotic maps. Our aim is to drive the chaotic maps to its initially unstable fixed points by using linear and nonlinear state feedback control. The control is achieved by using small, bounded perturbations. Some numerical simulations are given to demonstrate the effectiveness of the proposed control method.展开更多
This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed f...This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.展开更多
基金the National Natural Science Foundation of China.
文摘In this paper, we discuss feedback control of a class of delay chaotic maps. Our aim is to drive the chaotic maps to its initially unstable fixed points by using linear and nonlinear state feedback control. The control is achieved by using small, bounded perturbations. Some numerical simulations are given to demonstrate the effectiveness of the proposed control method.
基金This project was supported by the National Natural Science Foundation of China (No. 69974022).
文摘This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm-bounded parameter perturbations in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.