期刊文献+
共找到236篇文章
< 1 2 12 >
每页显示 20 50 100
MPMS-SGH:Multi-parameter Multi-step Prediction Model for Solar Greenhouse
1
作者 JI Ronghua WANG Wenxuan +2 位作者 AN Dong QI Shaotian LIU Jincun 《农业机械学报》 北大核心 2025年第7期265-278,共14页
Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parame... Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parameters.The monitoring platform collected data on the internal environment of the solar greenhouse for one year,including temperature,humidity,and light intensity.Additionally,meteorological data,comprising outdoor temperature,outdoor humidity,and outdoor light intensity,was gathered during the same time frame.The characteristics and interrelationships among these parameters were investigated by a thorough analysis.The analysis revealed that environmental parameters in solar greenhouses displayed characteristics such as temporal variability,non-linearity,and periodicity.These parameters exhibited complex coupling relationships.Notably,these characteristics and coupling relationships exhibited pronounced seasonal variations.The multi-parameter multi-step prediction model for solar greenhouse(MPMS-SGH)was introduced,aiming to accurately predict three key greenhouse environmental parameters,and the model had certain seasonal adaptability.MPMS-SGH was structured with multiple layers,including an input layer,a preprocessing layer,a feature extraction layer,and a prediction layer.The input layer was used to generate the original sequence matrix,which included indoor temperature,indoor humidity,indoor light intensity,as well as outdoor temperature and outdoor light intensity.Then the preprocessing layer normalized,decomposed,and positionally encoded the original sequence matrix.In the feature extraction layer,the time attention mechanism and frequency attention mechanism were used to extract features from the trend component and the seasonal component,respectively.Finally,the prediction layer used a multi-layer perceptron to perform multi-step prediction of indoor environmental parameters(i.e.temperature,humidity,and light intensity).The parameter selection experiment evaluated the predictive performance of MPMS-SGH on input and output sequences of different lengths.The results indicated that with a constant output sequence length,the prediction accuracy of MPMS-SGH was firstly increased and then decreased with the increase of input sequence length.Specifically,when the input sequence length was 100,MPMS-SGH had the highest prediction accuracy,with RMSE of 0.22℃,0.28%,and 250lx for temperature,humidity,and light intensity,respectively.When the length of the input sequence remained constant,as the length of the output sequence increased,the accuracy of the model in predicting the three environmental parameters was continuously decreased.When the length of the output sequence exceeded 45,the prediction accuracy of MPMS-SGH was significantly decreased.In order to achieve the best balance between model size and performance,the input sequence length of MPMS-SGH was set to be 100,while the output sequence length was set to be 35.To assess MPMS-SGH’s performance,comparative experiments with four prediction models were conducted:SVR,STL-SVR,LSTM,and STL-LSTM.The results demonstrated that MPMS-SGH surpassed all other models,achieving RMSE of 0.15℃for temperature,0.38%for humidity,and 260lx for light intensity.Additionally,sequence decomposition can contribute to enhancing MPMS-SGH’s prediction performance.To further evaluate MPMS-SGH’s capabilities,its prediction accuracy was tested across different seasons for greenhouse environmental parameters.MPMS-SGH had the highest accuracy in predicting indoor temperature and the lowest accuracy in predicting humidity.And the accuracy of MPMS-SGH in predicting environmental parameters of the solar greenhouse fluctuated with seasons.MPMS-SGH had the highest accuracy in predicting the temperature inside the greenhouse on sunny days in spring(R^(2)=0.91),the highest accuracy in predicting the humidity inside the greenhouse on sunny days in winter(R^(2)=0.83),and the highest accuracy in predicting the light intensity inside the greenhouse on cloudy days in autumm(R^(2)=0.89).MPMS-SGH had the lowest accuracy in predicting three environmental parameters in a sunny summer greenhouse. 展开更多
关键词 solar greenhouse environmental parameter time series multi-step prediction
在线阅读 下载PDF
Effect of PbTiO_(3) Content Variation on High-power Performance of PMN-PT Single Crystal
2
作者 WANG Xiaobo ZHU Yuliang +3 位作者 XUE Wenchao SHI Ruchuan LUO Bofeng LUO Chengtao 《无机材料学报》 北大核心 2025年第7期840-846,I0017,共8页
Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application o... Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element. 展开更多
关键词 piezoelectric single crystal PMN-PT high-power testing constant voltage method material parameter
在线阅读 下载PDF
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
3
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
Assessing fiber quality variability among modern upland cotton cultivars and incorporating it into the GOSSYM-based fiber quality simulation model
4
作者 BEEGUM Sahila HASSAN Muhammad Adeel +2 位作者 REDDY Krishna N. REDDY Vangimalla REDDY Kambham Raja 《Journal of Cotton Research》 2025年第2期213-227,共15页
Background GOSSYM is a mechanistic,process-based cotton model that can simulate cotton crop growth and development,yield,and fiber quality.Its fiber quality module was developed based on controlled experiments explici... Background GOSSYM is a mechanistic,process-based cotton model that can simulate cotton crop growth and development,yield,and fiber quality.Its fiber quality module was developed based on controlled experiments explicitly conducted on the Texas Marker^(-1)(TM1)variety,potentially making its functional equations more aligned with this cultivar.To assess the model’s broader applicability,this study analyzed fiber quality data from 40 upland cotton cultivars,including TM1.The measured fiber quality from all cultivars was then compared with the modelsimulated fiber quality.Results Among the 40 upland cultivars,fiber strength varied from 28.4 cN·tex^(-1) to 34.6 cN·tex^(-1),fiber length ranged from 27.1 mm to 33.3 mm,micronaire value ranged from 2.7 to 4.6,and length uniformity index varied from 82.3%to 85.5%.The model simulated fiber quality closely matched the measured values for TM1,with the absolute percentage error(APE)being less than 0.92%for fiber strength,fiber length,and length uniformity index and 4.7%for micronaire.However,significant differences were observed for the other cultivars.The Pearson correlation coefficient(r)between the measured and simulated values was negative for all fiber quality traits,and Wilmotts’s index of agreement(WIA)was below 0.45,indicating a strong model bias toward TM1 without incorporating cultivar-specific parameters.After incorporating cultivar-specific parameters,the model’s performance improved significantly,with an average r-value of 0.84 and WIA of 0.88.Conclusions The adopted methodology and estimated cultivar-specific parameters improved the model’s simulation accuracy.This approach can be applied to newer cotton cultivars,enhancing the GOSSYM model’s utility and its applicability for agricultural management and policy decisions. 展开更多
关键词 COTTON GOSSYM Crop modeling Fiber quality Cultivar-specific parameter
在线阅读 下载PDF
Design and experiment of an automated honey-harvesting robot
5
作者 ZHANG Di WANG Chunying +2 位作者 YANG Mingguo SUN Zixuan LIU Ping 《智能化农业装备学报(中英文)》 2025年第2期24-34,共11页
The conventional honey production is dominated by fragmented,small-scale individual farming models.The traditional approach of honey-harvesting involving manual beehive frames extraction,beeswax layer excision and cen... The conventional honey production is dominated by fragmented,small-scale individual farming models.The traditional approach of honey-harvesting involving manual beehive frames extraction,beeswax layer excision and centrifugal honey separation,expose beekeepers to potential bee stings and frequently compromise honeycomb integrity.To address these limitations,we designed an automated honey-harvesting robot capable of autonomous frame extraction and beeswax removal.The robot mainly consists of a mobile mechanism equipped with image recognition for beehive localization,a magnetic adsorption-based beehive frame handling device(60.8 N maximum suction)coupled with a cross-slide mechanism for precise frame manipulation,and a thermal beeswax layer-melting apparatus,with optimal melting parameters(15 m/s airflow at 90℃ for 30 seconds)determined through rigorous thermal flow simulations utilizing FLUENT/Mechanical software.Field experiments demonstrated beehive frames handling success rate exceeding 85%,beeswax layer removal efficacy over 80% and damage of honeycombs below 30%.The experiment results validate the robot's operational reliability and its capacity to automate critical harvesting procedures.This study significantly reduces the labor intensity for beekeepers,effectively eliminates the risk of direct human-bee contact and improves the removal of beeswax layer,thereby catalyzing the modernization of the beekeeping industry. 展开更多
关键词 honey-harvesting AUTOMATED beeswax layer-melting fluid-structure interaction parameter optimization
在线阅读 下载PDF
Compression-shear micro-and macro-failure characteristics of red sandstone
6
作者 LI Xue-feng DU Kun +2 位作者 WANG Li-chang ZHOU Jian YANG Tao 《Journal of Central South University》 2025年第2期437-448,共12页
The mechanical parameters and failure characteristics of sandstone under compressive-shear stress states provide crucial theoretical references for underground engineering construction.In this study,a series of varied... The mechanical parameters and failure characteristics of sandstone under compressive-shear stress states provide crucial theoretical references for underground engineering construction.In this study,a series of varied angle shear tests(VASTs)were designed using acoustic emission(AE)detection and digital image correlation technologies to evaluate the mechanical behaviors of typical red sandstone.AE signal parameters revealed differences in the number and intensity of microcracks within the sandstone,with a test angle(α)of 50°identified as a significant turning point for its failure properties.Whenα³50°,microcrack activity intensified,and the proportion of tensile cracks increased.Asαincreased,the number of fragments generated after failure decreased,fragment sizes became smaller,and the crack network simplified.Cracks extended from the two cut slits at the ends of the rock,gradually penetrating along the centerline towards the central location,as observed from the evolution of the strain concentration field.Both cohesion(c)and internal friction angle(ϕ)measured in VAST were lower than those measured under conventional triaxial compression. 展开更多
关键词 compressive-shear stress acoustic emission failure properties shear parameter
在线阅读 下载PDF
Modulated-unlimited sampling scheme and large dynamic range single carrier signals receiving in ultra-wideband frequency space
7
作者 Zhaoyang Qiu Pei Wang Chenpu Li 《Defence Technology(防务技术)》 2025年第9期234-245,共12页
Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without informat... Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without information loss. However, conventional receiving scheme is hard to have large dynamic range and ultra-wideband receiving simultaneously because of the analog-to-digital converter(ADC) dynamic range and sample rate limitations. In this paper, based on the modulated sampling and unlimited sampling, a novel receiving scheme is proposed to achieve large dynamic range and ultra-wideband receiving. Focusing on the single carrier signals, the proposed scheme only uses a single self-rest ADC(SR-ADC) with low sample rate, and it achieves large dynamic range and ultra-wideband receiving simultaneously. Two receiving scenarios are considered, and they are cooperative strong signal receiving and non-cooperative strong/weak signals receiving. In the cooperative receiving scenario, an improved fast recovery method is proposed to obtain the modulated sampling output. In the non-cooperative receiving scenario, the strong and weak signals with different carrier frequencies are considered, and the signal processing method can recover and estimate each signal. Simulation results show that the proposed scheme can realize large dynamic range and ultra-wideband receiving simultaneously when the input signal-to-noise(SNR) ratio is high. 展开更多
关键词 Modulated-unlimited sampling Ultra-wideband receiving Large dynamic range Signal recovery Parameter estimation
在线阅读 下载PDF
A methodology to simulate interior and intermediate ballistics with dynamic mesh technique and lumped parameter code
8
作者 G.Guermonprez T.Gaillard +2 位作者 J.Dupays J.Anthoine R.Demarthon 《Defence Technology(防务技术)》 2025年第7期447-464,共18页
The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.F... The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.First,the methodology is introduced with the development of an interior ballistics(IB)lumped parameter code(LPC),integrating an original image processing method for calculating the specific regression of propellant grains that compose the gun propellant.The ONERA CFD code CEDRE,equipped with a Dynamic Mesh Technique(DMT),is then used in conjunction with the developed LPC to build a dedicated methodology to calculate IB.First results obtained on the AGARD gun and 40 mm gun test cases are in a good agreement with the existing literature.CEDRE is also used to calculate inter-mediate ballistics(first milliseconds of free flight of the projectile)with a multispecies and reactive approach either starting from the gun muzzle plane or directly following IB.In the latter case,an inverse problem involving a Latin hypercube sampling method is used to find a gun propellant configuration that allows the projectile to reach a given exit velocity and base pressure when IB ends.The methodology developed in this work makes it possible to study the flame front of the intermediate flash and depressurization that occurs in a base bleed(BB)channel at the gun muzzle.Average pressure variations in the BB channel during depressurization are in good agreement with literature. 展开更多
关键词 Intermediate ballistics Interior ballistics(IB) Lumped parameter code(LPC) Form function Dynamic mesh
在线阅读 下载PDF
Incoherence parameter estimation and multiband fusion based on the novel structure-enhanced spatial spectrum algorithm
9
作者 JIANG Libing ZHENG Shuyu +2 位作者 YANG Qingwei ZHANG Xiaokuan WANG Zhuang 《Journal of Systems Engineering and Electronics》 2025年第4期867-879,共13页
In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes fu... In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes full advantage of the original electromagnetic scattering data and its conjugated form by combining them with the novel covariance matrices.To analyse the superiority of the modified algorithm,the mathematical expression of equivalent signal to noise ratio(SNR)is derived,which can validate our proposed algorithm theoretically.In addition,compared with the conventional matrix pencil(MP)algorithm and the conventional root-multiple signal classification(Root-MUSIC)algorithm,the proposed algorithm has better parameter estimation performance and more accurate multiband fusion results at the same SNR situations.Validity and effectiveness of the proposed algorithm is demonstrated by simulation data and real radar data. 展开更多
关键词 multiband fusion incoherence parameter estimation matrix pencil(MP) root-multiple signal classification(Root-MUSIC) covariance matrix.
在线阅读 下载PDF
A novel detection method for warhead fragment targets in optical images under dynamic strong interference environments
10
作者 Guoyi Zhang Hongxiang Zhang +4 位作者 Zhihua Shen Deren Kong Chenhao Ning Fei Shang Xiaohu Zhang 《Defence Technology(防务技术)》 2025年第1期252-270,共19页
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,... A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing. 展开更多
关键词 Damage parameter testing Warhead fragment target detection High-speed imaging systems Dynamic strong interference disturbance suppression Variational bayesian inference Motion target detection Faint streak-like target detection
在线阅读 下载PDF
Model-driven full system dynamics estimation of PMSM-driven chain shell magazine 被引量:1
11
作者 Kai Wei Longmiao Chen Quan Zou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期147-156,共10页
Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is pro... Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals. 展开更多
关键词 Chain shell magazine Full system dynamics estimation Disturbance estimation Parameter estimation Adaptive extended state observer
在线阅读 下载PDF
Quaternion-Based Adaptive Trajectory Tracking Control of a Rotor-Missile with Unknown Parameters Identification
12
作者 Jie Zhao Zhongjiao Shi +1 位作者 Yuchen Wang Wei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期375-386,共12页
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta... This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations. 展开更多
关键词 Rotor-missile Adaptive control Parameter identification Quaternion control
在线阅读 下载PDF
Tuning microstructures of TC4 ELI to improve explosion resistance
13
作者 Changle Zhang Yangwei Wang +6 位作者 Lin Wang Zixuan Ning Guoju Li Dongping Chen Zhi-Wei Yan Yuchen Song Xucai Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期78-99,共22页
A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to impr... A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation. 展开更多
关键词 MICROSTRUCTURE Finite element modelling Parameter optimization Failure characteristics Explosion resistance
在线阅读 下载PDF
Continuity of truncated Hardy-Littlewood maximal function
14
作者 WANG Yidong WU Jia YAN Dunyan 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第6期721-727,共7页
This paper focuses on the continuity of the truncated Hardy-Littlewood maximal function.We first show that the truncated Hardy-Littlewood maximal function is lower semi-continuous.Then by investigating the behavior of... This paper focuses on the continuity of the truncated Hardy-Littlewood maximal function.We first show that the truncated Hardy-Littlewood maximal function is lower semi-continuous.Then by investigating the behavior of the truncated Hardy-Littlewood maximal function when the truncated parameterγchanges,we obtain an equivalent condition of the continuity of the truncated Hardy-Littlewood maximal function. 展开更多
关键词 Hardy-Littlewood maximal function TRUNCATION CONTINUITY truncated parameter
在线阅读 下载PDF
System error iterative identification for underwater positioning based on spectral clustering
15
作者 LU Yu WANG Jiongqi +3 位作者 HE Zhangming ZHOU Haiyin XING Yao ZHOU Xuanying 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期1028-1041,共14页
The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by consideri... The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning. 展开更多
关键词 acoustic positioning reduced parameter system error identification improved spectral clustering accuracy analy-sis
在线阅读 下载PDF
Assessment of electrostatic discharge sensitivity of nitrogen-rich heterocyclic energetic compounds and their salts as high energy-density dangerous compounds:A study of structural variables
16
作者 Mohammad Hossein Keshavarz Sedigheh Heydari Bani +1 位作者 Reza Bakhtiari Seyyed Hesamodin Hosseini 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期15-22,共8页
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous... Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement. 展开更多
关键词 Electrostatic discharge sensitivity Heterocyclic energetic compounds containing azole compound Interpretable structural parameter Safety
在线阅读 下载PDF
Intelligent recognition and information extraction of radar complex jamming based on time-frequency features
17
作者 PENG Ruihui WU Xingrui +3 位作者 WANG Guohong SUN Dianxing YANG Zhong LI Hongwen 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1148-1166,共19页
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p... In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results. 展开更多
关键词 complex jamming recognition time frequency feature convolutional neural network(CNN) parameter estimation
在线阅读 下载PDF
Coarse-fine joint target parameter estimation method based on AN-RSC in OFDM passive radar
18
作者 WANG Chujun WAN Xianrong +1 位作者 YI Jianxin CHENG Feng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期339-349,共11页
In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to... In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation. 展开更多
关键词 passive radar orthogonal frequency division multiplexing(OFDM)signal atomic norm(AN) parameter estimation
在线阅读 下载PDF
A frequency domain estimation and compensation method for system synchronization parameters of distributed-HFSWR
19
作者 WANG Hongyong SUO Ying +3 位作者 DENG Weibo WU Xiaochuan BAI Yang ZHANG Xin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1084-1097,共14页
To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on th... To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper. 展开更多
关键词 distributed high-frequency surface wave radar(distributed-HFSWR) direct wave synchronization error curve fitting system synchronization parameter compensation
在线阅读 下载PDF
Cookie Baking Process Optimization and Quality Analysis Based on Food 3D Printing
20
作者 Liu Chenghai Li Jingyi +2 位作者 Wu Chunsheng Zhao Xinglong Zheng Xianzhe 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期61-73,共13页
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in... In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology. 展开更多
关键词 food 3D printing baking process COOKIE quality analysis optimization of process parameter
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部