Along with the increasing Big Data challenges, the MapReduce based systems are extensively welcomed, because of their remarkable simplicity and scalability. However, from the first day MapReduce is proposed, its a...Along with the increasing Big Data challenges, the MapReduce based systems are extensively welcomed, because of their remarkable simplicity and scalability. However, from the first day MapReduce is proposed, its argument with parallel Dt3MSs never stops, as it over-focuses on the scalability but overlooks the efficiency. Accordingly, extended systems are proposed in order to improve the peDbrmance on the limited scale clusters. In the meantime, traditional RDBMS technologies like structured data model, transaction, SQL, etc. are also getting more attention. This paper reviews such systems, from Google and also the third parties, trying to indicate the directions for the future research.展开更多
The Long Term Evolution (LTE) system imposes high requirements for dispatching delay.Moreover,very large air interface rate of LTE requires good processing capability for the devices processing the baseband signals.Co...The Long Term Evolution (LTE) system imposes high requirements for dispatching delay.Moreover,very large air interface rate of LTE requires good processing capability for the devices processing the baseband signals.Consequently,the single-core processor cannot meet the requirements of LTE system.This paper analyzes how to use multi-core processors to achieve parallel processing of uplink demodulation and decoding in LTE systems and designs an approach to parallel processing.The test results prove that this approach works quite well.展开更多
The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of ...The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of symmetric tridiagonal matrix. The multisection method for solving the generalized eigenproblem applied significantly in many science and engineering domains has not been studied. The parallel region preserving multisection method (PRM for short) for solving generalized eigenproblems of large sparse and real symmetric matrix is presented in this paper. This method not only retains the advantages of the conventional determinant search method (DS for short), but also overcomes its disadvantages such as leaking roots and disconvergence. We have tested the method on the YH 1 vector computer, and compared it with the parallel region preserving determinant search method the parallel region preserving bisection method (PRB for short). The numerical results show that PRM has a higher speed up, for instance, it attains the speed up of 7.7 when the scale of the problem is 2 114 and the eigenpair found is 3, and PRM is superior to PRB when the scale of the problem is large.展开更多
To study the application of TMS320C80 in image processing, an image processing system was designed based on this device, and the task of real time image processing was well accomplished on the hardware platform. TMS3...To study the application of TMS320C80 in image processing, an image processing system was designed based on this device, and the task of real time image processing was well accomplished on the hardware platform. TMS320C80 architecture's high degree of on chip integration and software flexibility will make it widely used in image processing that requires high processing speeds.展开更多
An improved recursive doubling algorithm for solving linear recurrence R <n,1>is given,whose parallel time complexity is (τ++τ.) logn when n processors are available,achieving the lower bound in array processo...An improved recursive doubling algorithm for solving linear recurrence R <n,1>is given,whose parallel time complexity is (τ++τ.) logn when n processors are available,achieving the lower bound in array processor type computation.展开更多
A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profi...A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profiling sonar.The system was designed for seabed petroleum pipeline detection and orientation,and can receive echo signals and process the data in real time,refreshing the display 10 times per second.Every node of the chirp sonar connects with data processing nodes through TCP/IP. Merely by adding nodes,the system’s processing ability can be increased proportionately without changing the software.System debugging and experimental testing proved the system to be practical and stable.This design provides a new method for high speed active sonar.展开更多
An optimal algorithmic approach to task scheduling for, triplet based architecture(TriBA), is proposed in this paper. TriBA is considered to be a high performance, distributed parallel computing architecture. TriBA ...An optimal algorithmic approach to task scheduling for, triplet based architecture(TriBA), is proposed in this paper. TriBA is considered to be a high performance, distributed parallel computing architecture. TriBA consists of a 2D grid of small, programmable processing units, each physically connected to its three neighbors. In parallel or distributed environment an efficient assignment of tasks to the processing elements is imperative to achieve fast job turnaround time. Moreover, the sojourn time experienced by each individual job should be minimized. The arriving jobs are comprised of parallel applications, each consisting of multiple-independent tasks that must be instantaneously assigned to processor queues, as they arrive. The processors independently and concurrently service these tasks. The key scheduling issues is, when some queue backlogs are small, an incoming job should first spread its tasks to those lightly loaded queues in order to take advantage of the parallel processing gain. Our algorithmic approach achieves optimality in task scheduling by assigning consecutive tasks to a triplet of processors exploiting locality in tasks. The experimental results show that tasks allocation to triplets of processing elements is efficient and optimal. Comparison to well accepted interconnection strategy, 2D mesh, is shown to prove the effectiveness of our algorithmic approach for TriBA. Finally we conclude that TriBA can be an efficient interconnection strategy for computations intensive applications, if tasks assignment is carried out optimally using algorithmic approach.展开更多
基金the National Natural Science Foundation of China under Grant No.61370091 and No.61170200,Jiangsu Province Science and Technology Support Program (industry) Project under Grant No.BE2012179
文摘Along with the increasing Big Data challenges, the MapReduce based systems are extensively welcomed, because of their remarkable simplicity and scalability. However, from the first day MapReduce is proposed, its argument with parallel Dt3MSs never stops, as it over-focuses on the scalability but overlooks the efficiency. Accordingly, extended systems are proposed in order to improve the peDbrmance on the limited scale clusters. In the meantime, traditional RDBMS technologies like structured data model, transaction, SQL, etc. are also getting more attention. This paper reviews such systems, from Google and also the third parties, trying to indicate the directions for the future research.
文摘The Long Term Evolution (LTE) system imposes high requirements for dispatching delay.Moreover,very large air interface rate of LTE requires good processing capability for the devices processing the baseband signals.Consequently,the single-core processor cannot meet the requirements of LTE system.This paper analyzes how to use multi-core processors to achieve parallel processing of uplink demodulation and decoding in LTE systems and designs an approach to parallel processing.The test results prove that this approach works quite well.
文摘The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of symmetric tridiagonal matrix. The multisection method for solving the generalized eigenproblem applied significantly in many science and engineering domains has not been studied. The parallel region preserving multisection method (PRM for short) for solving generalized eigenproblems of large sparse and real symmetric matrix is presented in this paper. This method not only retains the advantages of the conventional determinant search method (DS for short), but also overcomes its disadvantages such as leaking roots and disconvergence. We have tested the method on the YH 1 vector computer, and compared it with the parallel region preserving determinant search method the parallel region preserving bisection method (PRB for short). The numerical results show that PRM has a higher speed up, for instance, it attains the speed up of 7.7 when the scale of the problem is 2 114 and the eigenpair found is 3, and PRM is superior to PRB when the scale of the problem is large.
文摘To study the application of TMS320C80 in image processing, an image processing system was designed based on this device, and the task of real time image processing was well accomplished on the hardware platform. TMS320C80 architecture's high degree of on chip integration and software flexibility will make it widely used in image processing that requires high processing speeds.
文摘An improved recursive doubling algorithm for solving linear recurrence R <n,1>is given,whose parallel time complexity is (τ++τ.) logn when n processors are available,achieving the lower bound in array processor type computation.
基金the National High Technology Project of China Foundation under Grant No.2002AA602230-1
文摘A multi-beam chirp sonar based on IP connections and DSP processing nodes was proposed and designed to provide an expandable system with high-speed processing and mass-storage of real-time signals for multi-beam profiling sonar.The system was designed for seabed petroleum pipeline detection and orientation,and can receive echo signals and process the data in real time,refreshing the display 10 times per second.Every node of the chirp sonar connects with data processing nodes through TCP/IP. Merely by adding nodes,the system’s processing ability can be increased proportionately without changing the software.System debugging and experimental testing proved the system to be practical and stable.This design provides a new method for high speed active sonar.
文摘An optimal algorithmic approach to task scheduling for, triplet based architecture(TriBA), is proposed in this paper. TriBA is considered to be a high performance, distributed parallel computing architecture. TriBA consists of a 2D grid of small, programmable processing units, each physically connected to its three neighbors. In parallel or distributed environment an efficient assignment of tasks to the processing elements is imperative to achieve fast job turnaround time. Moreover, the sojourn time experienced by each individual job should be minimized. The arriving jobs are comprised of parallel applications, each consisting of multiple-independent tasks that must be instantaneously assigned to processor queues, as they arrive. The processors independently and concurrently service these tasks. The key scheduling issues is, when some queue backlogs are small, an incoming job should first spread its tasks to those lightly loaded queues in order to take advantage of the parallel processing gain. Our algorithmic approach achieves optimality in task scheduling by assigning consecutive tasks to a triplet of processors exploiting locality in tasks. The experimental results show that tasks allocation to triplets of processing elements is efficient and optimal. Comparison to well accepted interconnection strategy, 2D mesh, is shown to prove the effectiveness of our algorithmic approach for TriBA. Finally we conclude that TriBA can be an efficient interconnection strategy for computations intensive applications, if tasks assignment is carried out optimally using algorithmic approach.