期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Insights from model plants to improve cotton’s use of nitrogen and phosphorus
1
作者 PU Yuanchun WANG Peilin +6 位作者 ABBAS Mubashir IQBAL Asif DONG Qiang LUO Tong WANG Qianqian CAO Fei SONG Meizhen 《Journal of Cotton Research》 2025年第2期290-301,共12页
Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high de... Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high demand for N fertilizer across its developmental stages.This review explores the effects of adequate or deficient N and P levels on cotton growth phases,focusing on their influence on physiological processes and molecular mechanisms.Key topics include the regulation of N-and P-related enzymes,hormones,and genes,as well as the complex interplay of N-and P-related signaling pathways from the aspects of N-P signaling integration to regulate root development,N-P signaling integration to regulate nutrient uptake,and regulation of N-P interactions—a frontier in current research.Strategies for improving N and P use efficiency are also discussed,including developing high-efficiency cotton cultivars and identifying functional genes to enhance productivity.Generally speaking,we take model plants as a reference in the hope of coming up with new strategies for the efficient utilization of N and P in cotton. 展开更多
关键词 nitrogen use efficiency(NUE) Phosphorus use efficiency(PUE) Cultivation improvement nitrogenphosphorus transport mechanisms nitrogen-phosphorus interaction
在线阅读 下载PDF
The current status of nitrogen fertiliser use efficiency and future research directions for the Australian cotton industry 被引量:9
2
作者 MACDONALD Ben C.T. LATIMER James O. +2 位作者 SCHWENKE Graeme D. NACHIMUTHU Gunasekhar BAIRD Jonathan C. 《Journal of Cotton Research》 2018年第3期41-50,共10页
Fifty years of sustained investment in research and development has left the Australian cotton industry well placed to manage nitrogen(N) fertiliser. The average production in the Australian cotton industry today is... Fifty years of sustained investment in research and development has left the Australian cotton industry well placed to manage nitrogen(N) fertiliser. The average production in the Australian cotton industry today is greater than two tonnes of lint per hectare due to improved plant genetics and crop management. However, this average yield is well below the yield that would be expected from the amount of N fertiliser used. It is clear from the recent studies that across all growing regions, conversion of fertiliser N into lint is not uniformly occurring at application rates greater than 200-240 kg·hm;of N. This indicates that factors other than N availability are limiting yield, and that the observed nitrogen fertiliser use efficiency(NFUE) values may be caused by subsoil constraints such as sodicity and compaction. There is a need to investigate the impact of subsoil constraints on yield and NFUE.Gains in NFUE will be made through improved N fertiliser application timing, better targeting the amount of fertiliser applied for the expected yield, and improved soil N management. There is also a need to improve the ability and confidence of growers to estimate the contribution of soil N mineralisation to the crop N budget. Many Australian studies including data that could theoretically be collated in a meta-analysis suggest relative NFUE values as a function of irrigation technique; however, with the extensive list of uncontrolled variables and few studies using non-furrow irrigation, this would be a poor substitute for a single field-based study directly measuring their efficacies. In irrigated cotton, a re-examination of optimal NFUE is due because of the availability of new varieties and the potential management and long-term soil resilience implications of the continued removal of mineralised soil N suggested by high NFUE values. NFUE critical limits still need to be derived for dryland systems. 展开更多
关键词 nitrogen fertiliser nitrogen use efficiency DRYLAND IRRIGATED
在线阅读 下载PDF
Grain Yield and Nitrogen Use Efficiency of Hybrid Rice in Response to High Plant Density and Nitrogen Rate
3
作者 Jiang Peng Xu Fu-xian +5 位作者 Zhang Lin Zhou Xing-bing Xiong Hong Liu Mao Zhu Yong-chuan Guo Xiao-yi 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第2期23-34,共12页
Increased plant density with low N rate was a recommended strategy to increase grain yield and N use efficiency(NUE);however,grain yield,NUE and the total N uptake(TNU)responses of hybrid rice to this strategy at diff... Increased plant density with low N rate was a recommended strategy to increase grain yield and N use efficiency(NUE);however,grain yield,NUE and the total N uptake(TNU)responses of hybrid rice to this strategy at different yield levels(medium yielding site(MYS)Luzhou City and high yielding site(HYS)Deyang City had not been described.Field experiments with hybrid rice Rongyou1015 were conducted to study the effects of two plant densities.High plant density(HD),low plant density(LD)and four N rates(without N,N_(0);a recommended N rate of 195 kg•hm^(-2),N_(CK);a 23%reduction in N rate,N_(-23%);a 46%reduction in N rate,N_(-46%)on yield attributes,grain yield,TNU and NUE of hybrid rice were studied under different yield levels in 2016-2017.The results showed that the grain yield and NUE of hybrid rice in response to plant density and N rate varied with yield levels.For MYS,reducing N rate by 46%result in significantly lower grain yield at LD treatment;whereas at HD treatment the grain yield of hybrid rice under N_(-46%) and N_(CK) were equal.For HYS,reducing N rate by 46% result in significantly lower grain yield regardless of low plant density and high plant density;however,a reduction in N rate by 23%increased grain yield,AE_(N) by 36%,PFP_(N) by 31% and RE_(N) by 11% over N_(CK) at HD treatment.Higher grain yield of hybrid rice under the combination of HD with low N rate was attributable to improvement in spikelets per panicle and harvest index.The results suggested that high plant density with low N rate might be an effective approach to improve grain yield and NUE in rice production,but reduction in N application rate was determined,according to yield levels. 展开更多
关键词 plant density hybrid rice nitrogen use efficiency grain yield yield level nitrogen rate
在线阅读 下载PDF
Arabidopsis NLP7 improves nitrogen use efficiency and yield in cotton
4
作者 JAN Sami Ullah LIAQAT Ayesha +7 位作者 ZHU Yonghong LI Jing ZHANG Huangyang ABDALLA Mohnad WU Jie XIANG Chengbin WU Shenjie ALFATIH Alamin 《Journal of Cotton Research》 2022年第1期12-21,共10页
Background: Nitrogen(N) is a required macronutrient for cotton growth and productivity. Excessive N fertilizers are applied in agriculture for crop yield maximization, which also generates environmental pollution. Imp... Background: Nitrogen(N) is a required macronutrient for cotton growth and productivity. Excessive N fertilizers are applied in agriculture for crop yield maximization, which also generates environmental pollution. Improving crop N use efficiency(NUE) is the most economical and desirable way of reducing fertilizer application and environmental pollution. NUE has been an important issue in cotton. So far there is no report on cotton NUE improvement via transgenic approach. Nin-like proteins(NLP) are transcription factors regulating NUE. We previously demonstrated that At NLP7 improved NUE and biomass when overexpressed in Arabidopsis. However, it is not known whether At NLP7 can be used to improve NUE in crops.Results: To test the feasibility, we expressed At NLP7 in cotton and evaluated NUE and yield of the transgenic cotton in the field. Transgenic cotton showed improved NUE and yield under both low and high N conditions. In addition, plant biomass, amount of absorbed N, N contents, activities of N-assimilating enzymes, and the expression of N-related marker genes were significantly increased in transgenic cotton compared with the wild type control, suggesting that At NLP7 enhances NUE in cotton.Conclusion: Together, our results demonstrate that At NLP7 is a promising candidate to improve NUE and yield in cotton. 展开更多
关键词 nitrogen nitrogen metabolism nitrogen use efficiency(NUE) Nin-like protein(NLP) AtNLP7 Cotton(Gossypium hirsutum)
在线阅读 下载PDF
Identification and screening of nitrogenefficient cotton genotypes under low and normal nitrogen environments at the seedling stage 被引量:14
5
作者 ZHANG Hengheng FU Xiaoqiong +6 位作者 WANG Xiangru GUI Huiping DONG Qiang PANG Nianchang WANG Zhun ZHANG Xiling SONG Meizhen 《Journal of Cotton Research》 2018年第2期1-11,共11页
Background: Large quantities of nitrogen (N) fertilizer applied to cotton cropping systems support high yields but cause adverse environmental impacts such as N20 emission and water eutrophication. The development ... Background: Large quantities of nitrogen (N) fertilizer applied to cotton cropping systems support high yields but cause adverse environmental impacts such as N20 emission and water eutrophication. The development of cotton cultivars with higher N use efficiencies suitable for low-N conditions is therefore important for sustainable production. In this study, we evaluated 100 cotton genotypes in 2016 for N use efficiency and related traits at the seedling stage. Methods: Sand culture experiment was conducted with low N levels (0.01 g.kg i) or normal N levels (0.1 g.kg i). We investigated plant height, SPAD value (soil plant analysis development chlorophyll meter), dry weight, N accumulation, N utilization efficiency, and N uptake efficiency. Through descriptive statistics, principal component analysis and heatmap clustering analysis, we confirmed the evaluation index system of N-efficient genotypes and the classification of N-efficient genotypes. Results: Significant differences were observed among N levels and genotypes for all agronomic traits and N levels. Coefficients of variation varied greatly and ranged from 6.7N28.8 and 7.4N20.8 under low-N and normal-N treatment, respectively. All traits showed highly significant positive correlations with each other, except SPAD value. The principal components under both N levels were similar, showing that total dry weight, aboveground dry weight, total N accumulation, and N uptake efficiency were important components. We confirmed these four traits as suitable screening indexes for low N tolerance. Based on the results of heatmap clustering and scatter diagram analysis of N efficiency value, 10 genotypes were found low-N tolerant, in which five varieties were inefficient under both low and normal N conditions, while four varieties were found efficient under low-N conditions but inefficient under normal-N conditions. Only one variety was efficient under both low and normal-N conditions. Meanwhile, 20 genotypes were identified as low-N sensitive ones, in which 19 genotypes were inefficient under low-N conditions but efficient under normal-N conditions, one variety was inefficient under both low and normal-N conditions. Conclusion: We preliminarily identified Kashi as a low-N tolerant and N-efficient cotton genotype, and CCRI 64 as a low- N sensitive and N-inefficient cotton genotype. Further studies should be carried out to verify the yield and heritability effect of specific genotypes in the field. 展开更多
关键词 COTTON GENOTYPE nitrogen efficiency SCREENING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部