期刊文献+
共找到1,516篇文章
< 1 2 76 >
每页显示 20 50 100
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:3
1
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
2
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm OPTIMIZATION particle SWARM OPTIMIZATION (PSO) CLOUD computing system
在线阅读 下载PDF
Multi-objective optimization for draft scheduling of hot strip mill 被引量:2
3
作者 李维刚 刘相华 郭朝晖 《Journal of Central South University》 SCIE EI CAS 2012年第11期3069-3078,共10页
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ... A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production. 展开更多
关键词 hot strip mill draft scheduling multi-objective optimization multi-objective differential evolution algorithm based ondecomposition (MODE/D) Pareto-optimal front
在线阅读 下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
4
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(PSO) multi-objective optimization flexible flowshop scheduling smart home appliances
在线阅读 下载PDF
Hybrid heuristic algorithm for multi-objective scheduling problem 被引量:3
5
作者 PENG Jian'gang LIU Mingzhou +1 位作者 ZHANG Xi LING Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期327-342,共16页
This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-object... This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-objective flexible job-shop scheduling problems(MOFJSPs) to minimize makespan, total machine workload and critical machine workload. An initialization program embedded in opposition-based learning(OBL) is developed for enabling the individuals to scatter in a well-distributed manner in the initial harmony memory(HM). In addition, the recursive halving technique based on opposite number is employed for shrinking the neighbourhood space in the searching phase of the OGHS. From a practice-related standpoint, a type of dual vector code technique is introduced for allowing the OGHS algorithm to adapt the discrete nature of the MOFJSP. Two practical techniques, namely Pareto optimality and technique for order preference by similarity to an ideal solution(TOPSIS), are implemented for solving the MOFJSP.Furthermore, the algorithm performance is tested by using different strategies, including OBL and recursive halving, and the OGHS is compared with existing algorithms in the latest studies.Experimental results on representative examples validate the performance of the proposed algorithm for solving the MOFJSP. 展开更多
关键词 flexible job-SHOP scheduling HARMONY SEARCH (HS) algorithm PARETO OPTIMALITY opposition-based learning
在线阅读 下载PDF
An integer multi-objective optimization model and an enhanced non-dominated sorting genetic algorithm for contraflow scheduling problem
6
作者 李沛恒 楼颖燕 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2399-2405,共7页
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor... To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity. 展开更多
关键词 hurricane evacuation contraflow scheduling multi-objective optimization NSGA-II
在线阅读 下载PDF
Modified bottleneck-based heuristic for large-scale job-shop scheduling problems with a single bottleneck 被引量:21
7
作者 Zuo Yan Gu Hanyu Xi Yugeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期556-565,共10页
A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. I... A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, the bottleneck is first scheduled optimally while the non-bottleneck machines are subordinated around the solutions of the bottleneck schedule by some effective dispatching rules. Computational results indicate that the MB heuristic can achieve a better tradeoff between solution quality and computational time compared to SB procedure for medium-size problems. Furthermore, it can obtain a good solution in a short time for large-scale jobshop scheduling problems. 展开更多
关键词 job shop scheduling problem BOTTLENECK shifting bottleneck procedure.
在线阅读 下载PDF
Project Scheduling问题和Job-Shop问题的神经网络解 被引量:1
8
作者 章烔民 吴文娟 陶增乐 《计算机应用与软件》 CSCD 1998年第2期21-28,共8页
Project Scheduling问题和Job-Shop问题是著名的NP难题。本文用神经网络方法去解这两个问题,软件模拟结果是令人满意的。这种方法也为解一大类组合优化问题提供了一个新的途径。
关键词 job-SHOP问题 神经网络 优化问题
在线阅读 下载PDF
Job shop scheduling problem with alternative machines using genetic algorithms 被引量:10
9
作者 I.A.Chaudhry 《Journal of Central South University》 SCIE EI CAS 2012年第5期1322-1333,共12页
The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job ther... The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job there is only one process plan that prescribes the sequence of operations and the machine on which each operation has to be performed.However,JSP with alternative machines for various operations is an extension of the classical JSP,which allows an operation to be processed by any machine from a given set of machines.Since this problem requires an additional decision of machine allocation during scheduling,it is much more complex than JSP.We present a domain independent genetic algorithm(GA) approach for the job shop scheduling problem with alternative machines.The GA is implemented in a spreadsheet environment.The performance of the proposed GA is analyzed by comparing with various problem instances taken from the literatures.The result shows that the proposed GA is competitive with the existing approaches.A simplified approach that would be beneficial to both practitioners and researchers is presented for solving scheduling problems with alternative machines. 展开更多
关键词 alternative machine genetic algorithm (GA) job shop scheduling SPREADSHEET
在线阅读 下载PDF
Solving flexible job shop scheduling problem by a multi-swarm collaborative genetic algorithm 被引量:11
10
作者 WANG Cuiyu LI Yang LI Xinyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期261-271,共11页
The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborativ... The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborative optimization algorithm is proposed for the FJSP.Multi-population structure is used to independently evolve two sub-problems of the FJSP in the MSCGA.Good operators are adopted and designed to ensure this algorithm to achieve a good performance.Some famous FJSP benchmarks are chosen to evaluate the effectiveness of the MSCGA.The adaptability and superiority of the proposed method are demonstrated by comparing with other reported algorithms. 展开更多
关键词 flexible job shop scheduling problem(FJSP) collaborative genetic algorithm co-evolutionary algorithm
在线阅读 下载PDF
Multi-objective optimization of rolling schedule based on cost function for tandem cold mill 被引量:4
11
作者 陈树宗 张欣 +3 位作者 彭良贵 张殿华 孙杰 刘印忠 《Journal of Central South University》 SCIE EI CAS 2014年第5期1733-1740,共8页
In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and r... In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae. 展开更多
关键词 tandem cold mill multi-object optimization rolling schedule cost function simplex algorithm
在线阅读 下载PDF
Approximation algorithm for multiprocessor parallel job scheduling 被引量:1
12
作者 陈松乔 黄金贵 陈建二 《Journal of Central South University of Technology》 2002年第4期267-272,共6页
P k |fix| C max problem is a new scheduling problem based on the multiprocessor parallel job, and it is proved to be NP hard problem when k ≥3. This paper focuses on the case of k =3. Some new observations and new te... P k |fix| C max problem is a new scheduling problem based on the multiprocessor parallel job, and it is proved to be NP hard problem when k ≥3. This paper focuses on the case of k =3. Some new observations and new techniques for P 3 |fix| C max problem are offered. The concept of semi normal schedulings is introduced, and a very simple linear time algorithm Semi normal Algorithm for constructing semi normal schedulings is developed. With the method of the classical Graham List Scheduling, a thorough analysis of the optimal scheduling on a special instance is provided, which shows that the algorithm is an approximation algorithm of ratio of 9/8 for any instance of P 3|fix| C max problem, and improves the previous best ratio of 7/6 by M.X.Goemans. 展开更多
关键词 MULTIPROCESSOR PARALLEL job scheduling APPROXIMATION algorithm NP-HARD problem
在线阅读 下载PDF
A bi-objective model for job-shop scheduling problem to minimize both energy consumption and makespan 被引量:4
13
作者 何彦 刘飞 +1 位作者 曹华军 李聪波 《Journal of Central South University》 SCIE EI CAS 2005年第S2期167-171,共5页
The issue of reducing energy consumption for the job-shop scheduling problem in machining systems is addressed, whose dual objectives are to minimize both the energy consumption and the makespan. First, the bi- object... The issue of reducing energy consumption for the job-shop scheduling problem in machining systems is addressed, whose dual objectives are to minimize both the energy consumption and the makespan. First, the bi- objective model for the job-shop scheduling problem is proposed. The objective function value of the model represents synthesized optimization of energy consumption and makespan. Then, a heuristic algorithm is developed to locate the optimal or near optimal solutions of the model based on the Tabu search mechanism. Finally, the experimental case is presented to demonstrate the effectiveness of the proposed model and the algorithm. 展开更多
关键词 green manufacturing job-SHOP scheduling tabu SEARCH ENERGY-SAVING
在线阅读 下载PDF
Job shop scheduling problem based on DNA computing
14
作者 Yin Zhixiang Cui Jianzhong Yang Yan Ma Ying 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期654-659,共6页
To solve job shop scheduling problem, a new approach-DNA computing is used in solving job shop scheduling problem. The approach using DNA computing to solve job shop scheduling is divided into three stands. Finally, o... To solve job shop scheduling problem, a new approach-DNA computing is used in solving job shop scheduling problem. The approach using DNA computing to solve job shop scheduling is divided into three stands. Finally, optimum solutions are obtained by sequencing A small job shop scheduling problem is solved in DNA computing, and the "operations" of the computation were performed with standard protocols, as ligation, synthesis, electrophoresis etc. This work represents further evidence for the ability of DNA computing to solve NP-complete search problems. 展开更多
关键词 DNA computing job shop scheduling problem WEIGHTED tournament.
在线阅读 下载PDF
A Heuristic for the Job Scheduling Problem with a Common Due Window on Parallel and Non-Identical Machines
15
作者 Huang Decai College of information Engineering, Zhejiang University of Technology,Hangzhou 310014, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第2期6-11,共6页
In this paper, we give a mathematical model for earliness-tardiness job scheduling problem with a common due window on parallel and non-identical machines. Because the job scheduling problem discussed in the paper con... In this paper, we give a mathematical model for earliness-tardiness job scheduling problem with a common due window on parallel and non-identical machines. Because the job scheduling problem discussed in the paper contains a problem of minimizing make-span, which is NP-complete on parallel and uniform machines, a heuristic algorithm is presented to find an approximate solution for the scheduling problem after proving an important theorem. Two numerical examples illustrate that the heuristic algorithm is very useful and effective in obtaining the near-optimal solution. 展开更多
关键词 Common due window job scheduling Earliness-tardiness JIT.
在线阅读 下载PDF
Reactive scheduling of multiple EOSs under cloud uncertainties:model and algorithms 被引量:4
16
作者 WANG Jianjiang HU Xuejun HE Chuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期163-177,共15页
Most earth observation satellites(EOSs)are low-orbit satellites equipped with optical sensors that cannot see through clouds.Hence,cloud coverage,high dynamics,and cloud uncertainties are important issues in the sched... Most earth observation satellites(EOSs)are low-orbit satellites equipped with optical sensors that cannot see through clouds.Hence,cloud coverage,high dynamics,and cloud uncertainties are important issues in the scheduling of EOSs.The proactive-reactive scheduling framework has been proven to be effective and efficient for the uncertain scheduling problem and has been extensively employed.Numerous studies have been conducted on methods for the proactive scheduling of EOSs,including expectation,chance-constrained,and robust optimization models and the relevant solution algorithms.This study focuses on the reactive scheduling of EOSs under cloud uncertainties.First,using an example,we describe the reactive scheduling problem in detail,clarifying its significance and key issues.Considering the two key objectives of observation profits and scheduling stability,we construct a multi-objective optimization mathematical model.Then,we obtain the possible disruptions of EOS scheduling during execution under cloud uncertainties,adopting an event-driven policy for the reactive scheduling.For the different disruptions,different reactive scheduling algorithms are designed.Finally,numerous simulation experiments are conducted to verify the feasibility and effectiveness of the proposed reactive scheduling algorithms.The experimental results show that the reactive scheduling algorithms can both improve observation profits and reduce system perturbations. 展开更多
关键词 earth observation satellite(EOS) uncertainty of clouds reactive scheduling multi-objective optimization EVENT-DRIVEN HEURISTIC
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
17
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
Modeling and Analysis of Single Machine Scheduling Based on Noncooperative Game Theory 被引量:3
18
作者 WANGChang-Jun XIYu-Geng 《自动化学报》 EI CSCD 北大核心 2005年第4期516-522,共7页
Considering the independent optimization requirement for each demander of modernmanufacture, we explore the application of noncooperative game in production scheduling research,and model scheduling problem as competit... Considering the independent optimization requirement for each demander of modernmanufacture, we explore the application of noncooperative game in production scheduling research,and model scheduling problem as competition of machine resources among a group of selfish jobs.Each job has its own performance objective. For the single machine, multi-jobs and non-preemptivescheduling problem, a noncooperative game model is established. Based on the model, many prob-lems about Nash equilibrium solution, such as the existence, quantity, properties of solution space,performance of solution and algorithm are discussed. The results are tested by numerical example. 展开更多
关键词 单机时序 NASH平衡 工作计划 工作目标 自动化技术
在线阅读 下载PDF
深度强化学习求解动态柔性作业车间调度问题 被引量:1
19
作者 杨丹 舒先涛 +3 位作者 余震 鲁光涛 纪松霖 王家兵 《现代制造工程》 北大核心 2025年第2期10-16,共7页
随着智慧车间等智能制造技术的不断发展,人工智能算法在解决车间调度问题上的研究备受关注,其中车间运行过程中的动态事件是影响调度效果的一个重要扰动因素,为此提出一种采用深度强化学习方法来解决含有工件随机抵达的动态柔性作业车... 随着智慧车间等智能制造技术的不断发展,人工智能算法在解决车间调度问题上的研究备受关注,其中车间运行过程中的动态事件是影响调度效果的一个重要扰动因素,为此提出一种采用深度强化学习方法来解决含有工件随机抵达的动态柔性作业车间调度问题。首先以最小化总延迟为目标建立动态柔性作业车间的数学模型,然后提取8个车间状态特征,建立6个复合型调度规则,采用ε-greedy动作选择策略并对奖励函数进行设计,最后利用先进的D3QN算法进行求解并在不同规模车间算例上进行了有效性验证。结果表明,提出的D3QN算法能非常有效地解决含有工件随机抵达的动态柔性作业车间调度问题,在所有车间算例中的求优胜率为58.3%,相较于传统的DQN和DDQN算法车间延迟分别降低了11.0%和15.4%,进一步提升车间的生产制造效率。 展开更多
关键词 深度强化学习 D3QN算法 工件随机抵达 柔性作业车间调度 动态调度
在线阅读 下载PDF
基于DRL的大规模定制装配车间调度研究
20
作者 屈新怀 张慧慧 +1 位作者 丁必荣 孟冠军 《合肥工业大学学报(自然科学版)》 北大核心 2025年第7期878-883,共6页
针对大规模定制装配车间中订单的随机性和偶然性问题,文章提出一种基于深度强化学习(deep reinforcement learning,DRL)的大规模定制装配车间作业调度优化方法。建立以最小化产品组件更换次数和最小化订单提前/拖期惩罚为目标的大规模... 针对大规模定制装配车间中订单的随机性和偶然性问题,文章提出一种基于深度强化学习(deep reinforcement learning,DRL)的大规模定制装配车间作业调度优化方法。建立以最小化产品组件更换次数和最小化订单提前/拖期惩罚为目标的大规模定制装配车间作业调度优化模型,基于调度模型建立马尔科夫决策过程,合理定义状态、动作和奖励函数;将调度模型优化问题与DRL方法相结合,并采用改进的D3QN算法进行模型求解;最后进行仿真实验验证。结果表明,文章所提方法能有效减少产品组件更换次数和降低订单提前/拖期惩罚。 展开更多
关键词 大规模定制 装配车间 深度强化学习(DRL) 车间作业调度 调度优化模型
在线阅读 下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部