A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deterior...The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.展开更多
The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it wi...The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it will cause serious mainlobe distortion,that the target detection suffers from.To overcome this problem and make radar cope with the complex multiple interferences scenarios,we propose a multiple mainlobe and/or sidelobe interferences suppression method for dual polarization array radar.Specifically,the proposed method consists of a signal preprocessing based on the proposed angle estimation with degree of polarization(DoP),and a filtering criterion based on the proposed linear constraint.The signal preprocessing provides the accurate estimated parameters of the interference,which contributes to the criterion for null-decoupling in the space-polarization domain of mainlobe.The proposed method can reduce the mainlobe distortion in the space-polarization domain while suppressing the multiple mainlobe and/or sidelobe interferences.The effectiveness of the proposed method is verified by simulations.展开更多
Interference suppression is a challenge for radar researchers, especially when mainlobe and sidelobe interference coexist. We present a comprehensive anti-interference approach based on a cognitive bistatic airborne r...Interference suppression is a challenge for radar researchers, especially when mainlobe and sidelobe interference coexist. We present a comprehensive anti-interference approach based on a cognitive bistatic airborne radar. The risk of interception is reduced by lowering the launch energy of the radar transmitting terminal in the direction of interference;main lobe and sidelobe interferences are suppressed via cooperation between the two radars. The interference received by a single radar is extracted from the overall radar signal using multiple signal classification(MUSIC), and the interference is cross-located using two different azimuthal angles. Neural networks allowing good, non-linear nonparametric approximations are used to predict the location of interference, and this information is then used to preset the transmitting notch antenna to reduce the likelihood of interception. To simultaneously suppress mainlobe and sidelobe interferences, a blocking matrix is used to mask mainlobe interference based on azimuthal information, and an adaptive process is used to suppress sidelobe interference. Mainlobe interference is eliminated using the data received by the two radars. Simulation verifies the performance of the model.展开更多
Synthetic aperture radar(SAR)is a high-resolution two-dimensional imaging radar.However,during the imaging process,SAR is susceptible to intentional and unintentional interference,with radio frequency inter⁃ference(RF...Synthetic aperture radar(SAR)is a high-resolution two-dimensional imaging radar.However,during the imaging process,SAR is susceptible to intentional and unintentional interference,with radio frequency inter⁃ference(RFI)being the most common type,leading to a severe degradation in image quality.To address the above problem,numerous algorithms have been proposed.Although inpainting networks have achieved excellent results,their generalization is unclear.Whether they still work effectively in cross-sensor experiments needs fur⁃ther verification.Through the time-frequency analysis to interference signals,this work finds that interference holds domain invariant features between different sensors.Therefore,this work reconstructs the loss function and extracts the domain invariant features to improve its generalization.Ultimately,this work proposes a SAR RFI suppression method based on domain invariant features,and embeds the RFI suppression into SAR imaging pro⁃cess.Compared to traditional notch filtering methods,the proposed approach not only removes interference but also effectively preserves strong scattering targets.Compared to PISNet,our method can extract domain invariant features and hold better generalization ability,and even in the cross-sensor experiments,our method can still achieve excellent results.In cross-sensor experiments,training data and testing data come from different radar platforms with different parameters,so cross-sensor experiments can provide evidence for the generalization.展开更多
The key to narrow-band interference excision in frequency domain is to determine the excision thresh- old in direct-sequence spread-spectrum (DS-SS) systems. The excision threshold is a non-linear function related t...The key to narrow-band interference excision in frequency domain is to determine the excision thresh- old in direct-sequence spread-spectrum (DS-SS) systems. The excision threshold is a non-linear function related to the number and the power of interference, and attempting to get the exact relation of threshold related to the number and the power of interference is almost impossible. The N-sigma algorithm determines the excision threshold using subsection function; however, the excision threshold determined by this method is not exact. A new method to determine the threshold of N-sigma algorithm is proposed. The new method modifies the scale factor N by use of the membership function. The threshold determined by this method is consecutive and smooth, and it is closer to the fact than that of the initial N-sigma algorithm. The GPS signal and single-tone (CW) interference (that is, typical narrow-band interference) are implemented in the simulation, and the results are presented to demonstrate the validity of the new algorithm.展开更多
A new method of single sample polarization filtering is proposed. The algorithm is fast and suitable for the polarization processing of stationary or nonstationary polarized disturbed signals with one or more independ...A new method of single sample polarization filtering is proposed. The algorithm is fast and suitable for the polarization processing of stationary or nonstationary polarized disturbed signals with one or more independent disturbances. A ground wave polarimetric radar with the ability of radio disturbance suppression is then introduced. Some numerical results demonstrate the effectiveness of single sample polarization filtering method for ground wave polarimetric radar.展开更多
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
文摘The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.
基金supported by the National Natural Science Foundation of China(6190149661871385)。
文摘The adaptive digital beamforming technique in the space-polarization domain suppresses the interference with forming the coupling nulls of space and polarization domain.When there is the interference in mainlobe,it will cause serious mainlobe distortion,that the target detection suffers from.To overcome this problem and make radar cope with the complex multiple interferences scenarios,we propose a multiple mainlobe and/or sidelobe interferences suppression method for dual polarization array radar.Specifically,the proposed method consists of a signal preprocessing based on the proposed angle estimation with degree of polarization(DoP),and a filtering criterion based on the proposed linear constraint.The signal preprocessing provides the accurate estimated parameters of the interference,which contributes to the criterion for null-decoupling in the space-polarization domain of mainlobe.The proposed method can reduce the mainlobe distortion in the space-polarization domain while suppressing the multiple mainlobe and/or sidelobe interferences.The effectiveness of the proposed method is verified by simulations.
文摘Interference suppression is a challenge for radar researchers, especially when mainlobe and sidelobe interference coexist. We present a comprehensive anti-interference approach based on a cognitive bistatic airborne radar. The risk of interception is reduced by lowering the launch energy of the radar transmitting terminal in the direction of interference;main lobe and sidelobe interferences are suppressed via cooperation between the two radars. The interference received by a single radar is extracted from the overall radar signal using multiple signal classification(MUSIC), and the interference is cross-located using two different azimuthal angles. Neural networks allowing good, non-linear nonparametric approximations are used to predict the location of interference, and this information is then used to preset the transmitting notch antenna to reduce the likelihood of interception. To simultaneously suppress mainlobe and sidelobe interferences, a blocking matrix is used to mask mainlobe interference based on azimuthal information, and an adaptive process is used to suppress sidelobe interference. Mainlobe interference is eliminated using the data received by the two radars. Simulation verifies the performance of the model.
基金Supported by the National Natural Science Foundation of China(62001489)。
文摘Synthetic aperture radar(SAR)is a high-resolution two-dimensional imaging radar.However,during the imaging process,SAR is susceptible to intentional and unintentional interference,with radio frequency inter⁃ference(RFI)being the most common type,leading to a severe degradation in image quality.To address the above problem,numerous algorithms have been proposed.Although inpainting networks have achieved excellent results,their generalization is unclear.Whether they still work effectively in cross-sensor experiments needs fur⁃ther verification.Through the time-frequency analysis to interference signals,this work finds that interference holds domain invariant features between different sensors.Therefore,this work reconstructs the loss function and extracts the domain invariant features to improve its generalization.Ultimately,this work proposes a SAR RFI suppression method based on domain invariant features,and embeds the RFI suppression into SAR imaging pro⁃cess.Compared to traditional notch filtering methods,the proposed approach not only removes interference but also effectively preserves strong scattering targets.Compared to PISNet,our method can extract domain invariant features and hold better generalization ability,and even in the cross-sensor experiments,our method can still achieve excellent results.In cross-sensor experiments,training data and testing data come from different radar platforms with different parameters,so cross-sensor experiments can provide evidence for the generalization.
文摘The key to narrow-band interference excision in frequency domain is to determine the excision thresh- old in direct-sequence spread-spectrum (DS-SS) systems. The excision threshold is a non-linear function related to the number and the power of interference, and attempting to get the exact relation of threshold related to the number and the power of interference is almost impossible. The N-sigma algorithm determines the excision threshold using subsection function; however, the excision threshold determined by this method is not exact. A new method to determine the threshold of N-sigma algorithm is proposed. The new method modifies the scale factor N by use of the membership function. The threshold determined by this method is consecutive and smooth, and it is closer to the fact than that of the initial N-sigma algorithm. The GPS signal and single-tone (CW) interference (that is, typical narrow-band interference) are implemented in the simulation, and the results are presented to demonstrate the validity of the new algorithm.
文摘A new method of single sample polarization filtering is proposed. The algorithm is fast and suitable for the polarization processing of stationary or nonstationary polarized disturbed signals with one or more independent disturbances. A ground wave polarimetric radar with the ability of radio disturbance suppression is then introduced. Some numerical results demonstrate the effectiveness of single sample polarization filtering method for ground wave polarimetric radar.