Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical e...Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical experimental measurement and numerical simulation pose research challenges.This study focuses on the ice load of a cylinder structure breaking upward through the ice sheet form underneath in the Small Ice Model Basin of China Ship Scientific Research Center(CSSRC SIMB).A high-speed camera system was employed to observe the ice sheet failure during the tests,in which,with the loading position as center,local radial cracks and circumferential cracks were generated.A load sensor was used to measure the overall ice load during this process.Meanwhile,a numerical model was developed using LS-DYNA for validation and comparison.With this model,numerical simulation was conducted under various ice thicknesses and upgoing speeds to analyze the instantaneous curves of ice load.The calculation results were statistically analyzed under different working conditions to determine the influence of the factors on the ice load of the cylinder.The study explores the measurement method about ice load of objects vertically breaking through model ice sheet and is expected to provide some fundamental insights into the safety design of underwater structures operating in ice waters.展开更多
Advertising avoidance is resistance to advertising intrusion.This issue has been the subject of much academic research in recent years.To guide scholars to better carry out relevant research and promote enterprises to...Advertising avoidance is resistance to advertising intrusion.This issue has been the subject of much academic research in recent years.To guide scholars to better carry out relevant research and promote enterprises to better implement advertising activities,this study intends to summarize the relevant research on advertising avoidance in recent years.The specific method is to use the core literature meta-analysis method to identify,filter,and screen relevant literature published in core journals from 1997 to 2020 with the keywords advertising avoidance and advertising resistance.We review the collected articles from the following perspectives:the definition and classification,external stimulating factors,internal perception factors,and moderating factors of advertising avoidance.On this basis,the SOMR model of advertising avoidance is constructed according to the SOR model.Finally,some prospects for future related research are presented.展开更多
Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a vi...Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.展开更多
Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,su...Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies.展开更多
To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings rev...To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings reveal that the elastic modulus and Poisson ratio of dolomite fluctuate with increasing water content.The mass of water absorption is positively correlated with time and the water absorption stage can be divided into three stages:accelerated,decelerated,and stabilized stages.During this process,the number of pores in dolomite increases,while the pore diameter initially decreases and then fluctuates.Microscopic analysis shows that the proportion of mesopores first increases and then decreases,while micropores exhibit the opposite trend,and the proportion of macropores fluctuates around 0%.A model diagram of structural evolution during water absorption has been developed.Additionally,the softening process of dolomite’s water absorption strength is categorized into three stages:a relatively stable stage,an accelerated softening stage dominated by mesopore water absorption,and a decelerated softening stage characterized by micropore water absorption.A uniaxial damage constitutive model for dolomite under water influence was established based on the Weibull distribution and Mohr-Coulomb strength criterion,and experimental validation indicates its strong applicability.展开更多
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight...Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.展开更多
Missiles provide long-range precision strike capabilities and have become a cornerstone of modern warfare.The contrail clouds formed by missile during their active flight phase present significant chal-lenges to high-...Missiles provide long-range precision strike capabilities and have become a cornerstone of modern warfare.The contrail clouds formed by missile during their active flight phase present significant chal-lenges to high-altitude environmental observation and target detection and tracking.Existing studies primarily focus on specific airspace regions,leaving critical gaps in understanding the effects of long dispersion times,wide altitude ranges,and variable atmospheric conditions on missile contrail clouds.To address these gaps,this article develops a numerical method based on the Lagrangian random walk model,which incorporates various velocity variation terms,including particle velocity caused by the difference of wind field,by the thermal motion of local gas molecules and by random collisions between contrail cloud particles to capture the influence of environmental wind fields,atmospheric conditions,and particle concentrations on the motion of contrail cloud particles.A general coordinate system aligned with the missile's flight trajectory is employed to represent particle distribution characteristics.The proposed method is in good agreement with the conducted experiments as well as with the available numerical simulations.The results demonstrate that the proposed model effectively simulates the dispersion state of contrail clouds,accurately reflecting the impact of large-scale wind field variations and altitude changes with high computational efficiency.Additionally,simulation results indicate that the increased distance between gas molecules in rarefied environments facilitates enhanced particle dispersion,while larger particles exhibit a faster dispersion rate due to their greater mass.展开更多
Following the fundamental characteristics of the porosity windbreak,this study suggests a new numerical investigation method for the wind field of the windbreak based on the porous medium physical model.This method ca...Following the fundamental characteristics of the porosity windbreak,this study suggests a new numerical investigation method for the wind field of the windbreak based on the porous medium physical model.This method can transform the reasonable matching problem of the porosity and windproof performance of the windbreak into a study of the relationship between the resistance coefficient of the porous medium and the aerodynamic load of the train.This study examines the influence of the hole type on the wind field behind the porosity windbreak.Then,the relationship between the resistance coefficient of the porous medium,the porosity of the windbreak,and the aerodynamic loads of the train is investigated.The results show that the porous media physical model can be used instead of the windbreak geometry to study the windbreak-train aerodynamic performance,and the process of using this method is suggested.展开更多
This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectil...This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectiles,these plates tend to fail through adiabatic shear plugging which significantly reduces their ballistic resistance.To address this effect,an approach for determining effective thickness was defined and incorporated into the predictive model.Ballistic impact tests were performed to assess the modification's validity,in which ARMOX 500T steel plates were subjected to perpendicular impacts from 7.62×39 mm steel-cored rounds under various velocities.Frequent target failure by soft plugging was observed,as well as the brittle shatter of the hard steel core.Key properties of the recovered plugs including their mass,length and diameter were measured and reported along with the projectiles'residual velocities.Additionally,independent data from the open literature were included in the analysis for further validation.The original Forrestal-Warren model and the novel effective thickness modification were then used to establish the relationship between impact and residual velocities,as well as to determine the ballistic limit velocity.The comparison revealed that the proposed approach significantly improves the model's accuracy,showing a strong correlation with experimental data and reducing deviations to within a few percent.This enhancement highlights the potential of the effective thickness term,which could also be applied to other predictive models to extend their applicability range.Further exploration into other armor steels and impact conditions is recommended to assess the method's versatility.展开更多
The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequ...The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.展开更多
Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be so...Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process(AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16.展开更多
Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and int...Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and intermediate principal stress σ_(2) tests on sandstone to simulate the effect of mining stress in actual underground engineering.The influences of each principal stress cycle on the mechanical properties,acoustic emission(AE)characteristics,and fracture characteristics of sandstone were analyzed.The damage characteristics of sandstone under true triaxial cyclic loading were studied.Furthermore,the damage constitutive model of rock mass under true triaxial cyclic loading was established based on AE cumulative ringing count.The quantitative investigation was conducted on cumulative-damage changes in circulating sandstone,which elucidated the mechanism of damage deterioration in sandstone subjected to true triaxial cyclic loading.The results show that the influence of the graded cycleσ_(1) on limit maximum principal strain ɛ_(1max) and limit minimum principal strainɛ_(3max) was significantly greater than that of the limit intermediate principal strain ɛ_(2max).Graded cycleσ_(2) had a greater impact onɛ_(2max) and a smaller impact onɛ_(3max).The elasticity modulus of sandstone decreased exponentially with the increased cyclic load amplitude,while the Poisson ratio increased linearly.b of AE showed a trend of increasing,decreasing,slightly fluctuating,and finally decreasing during cyclingσ_(1).b showed a trend of slight fluctuation,large fluctuation,and finally increase during cyclingσ_(2).Sandstone specimens experienced mainly tensile failure,tensile-shear composite failure,and mainly shear failure with increased initialσ_(2) orσ_(3).This was determined by analyzing the rise angle-average frequency of the AE parameter,corresponding to the rock specimens from splitting failure to shear failure.Besides,the mechanical damage behavior of sandstone under true triaxial cyclic loading could be well described by the established constitutive model.At the same time,it was found that the sandstone damage variable decreased with increasedσ_(2) during cyclingσ_(1).The damage variable decreased first and then increased with increasedσ_(3) during cyclingσ_(2).展开更多
As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely...As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields.展开更多
This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi...This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
文摘Ice load on underwater vehicles breaking through ice covers from underneath is a significant concern for researchers in polar exploration,and the research on this problem is still in its early stages.Both mechanical experimental measurement and numerical simulation pose research challenges.This study focuses on the ice load of a cylinder structure breaking upward through the ice sheet form underneath in the Small Ice Model Basin of China Ship Scientific Research Center(CSSRC SIMB).A high-speed camera system was employed to observe the ice sheet failure during the tests,in which,with the loading position as center,local radial cracks and circumferential cracks were generated.A load sensor was used to measure the overall ice load during this process.Meanwhile,a numerical model was developed using LS-DYNA for validation and comparison.With this model,numerical simulation was conducted under various ice thicknesses and upgoing speeds to analyze the instantaneous curves of ice load.The calculation results were statistically analyzed under different working conditions to determine the influence of the factors on the ice load of the cylinder.The study explores the measurement method about ice load of objects vertically breaking through model ice sheet and is expected to provide some fundamental insights into the safety design of underwater structures operating in ice waters.
文摘Advertising avoidance is resistance to advertising intrusion.This issue has been the subject of much academic research in recent years.To guide scholars to better carry out relevant research and promote enterprises to better implement advertising activities,this study intends to summarize the relevant research on advertising avoidance in recent years.The specific method is to use the core literature meta-analysis method to identify,filter,and screen relevant literature published in core journals from 1997 to 2020 with the keywords advertising avoidance and advertising resistance.We review the collected articles from the following perspectives:the definition and classification,external stimulating factors,internal perception factors,and moderating factors of advertising avoidance.On this basis,the SOMR model of advertising avoidance is constructed according to the SOR model.Finally,some prospects for future related research are presented.
基金National Natural Science Foundation of China(71690233,71971213,71901214)。
文摘Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method.
基金funded through India Meteorological Department,New Delhi,India under the Forecasting Agricultural output using Space,Agrometeorol ogy and Land based observations(FASAL)project and fund number:No.ASC/FASAL/KT-11/01/HQ-2010.
文摘Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies.
基金Project(IMRI23005)supported by Ordos Science and Technology Bureau,ChinaProjects(52174096,52304110)supported by the National Natural Science Foundation of China。
文摘To investigate the effects of water and cyclic loading on dolomite’s mechanical properties during deep mining,mechanical experiments on non-pressure water absorption and cyclic loading were conducted.The findings reveal that the elastic modulus and Poisson ratio of dolomite fluctuate with increasing water content.The mass of water absorption is positively correlated with time and the water absorption stage can be divided into three stages:accelerated,decelerated,and stabilized stages.During this process,the number of pores in dolomite increases,while the pore diameter initially decreases and then fluctuates.Microscopic analysis shows that the proportion of mesopores first increases and then decreases,while micropores exhibit the opposite trend,and the proportion of macropores fluctuates around 0%.A model diagram of structural evolution during water absorption has been developed.Additionally,the softening process of dolomite’s water absorption strength is categorized into three stages:a relatively stable stage,an accelerated softening stage dominated by mesopore water absorption,and a decelerated softening stage characterized by micropore water absorption.A uniaxial damage constitutive model for dolomite under water influence was established based on the Weibull distribution and Mohr-Coulomb strength criterion,and experimental validation indicates its strong applicability.
基金supported by the Key R&D Projects in Jiangsu Province(BE2021729)the Key Primary Research Project of Primary Strengthening Program(KYZYJKKCJC23001).
文摘Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.
文摘Missiles provide long-range precision strike capabilities and have become a cornerstone of modern warfare.The contrail clouds formed by missile during their active flight phase present significant chal-lenges to high-altitude environmental observation and target detection and tracking.Existing studies primarily focus on specific airspace regions,leaving critical gaps in understanding the effects of long dispersion times,wide altitude ranges,and variable atmospheric conditions on missile contrail clouds.To address these gaps,this article develops a numerical method based on the Lagrangian random walk model,which incorporates various velocity variation terms,including particle velocity caused by the difference of wind field,by the thermal motion of local gas molecules and by random collisions between contrail cloud particles to capture the influence of environmental wind fields,atmospheric conditions,and particle concentrations on the motion of contrail cloud particles.A general coordinate system aligned with the missile's flight trajectory is employed to represent particle distribution characteristics.The proposed method is in good agreement with the conducted experiments as well as with the available numerical simulations.The results demonstrate that the proposed model effectively simulates the dispersion state of contrail clouds,accurately reflecting the impact of large-scale wind field variations and altitude changes with high computational efficiency.Additionally,simulation results indicate that the increased distance between gas molecules in rarefied environments facilitates enhanced particle dispersion,while larger particles exhibit a faster dispersion rate due to their greater mass.
基金Projects(52302447,52388102,52372369)supported by the National Natural Science Foundation of China。
文摘Following the fundamental characteristics of the porosity windbreak,this study suggests a new numerical investigation method for the wind field of the windbreak based on the porous medium physical model.This method can transform the reasonable matching problem of the porosity and windproof performance of the windbreak into a study of the relationship between the resistance coefficient of the porous medium and the aerodynamic load of the train.This study examines the influence of the hole type on the wind field behind the porosity windbreak.Then,the relationship between the resistance coefficient of the porous medium,the porosity of the windbreak,and the aerodynamic loads of the train is investigated.The results show that the porous media physical model can be used instead of the windbreak geometry to study the windbreak-train aerodynamic performance,and the process of using this method is suggested.
基金supported by the Ministry of Science,Technological Development and Innovation of the Republic of Serbia,through the Contract no.451-03-65/2024-03/200105
文摘This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectiles,these plates tend to fail through adiabatic shear plugging which significantly reduces their ballistic resistance.To address this effect,an approach for determining effective thickness was defined and incorporated into the predictive model.Ballistic impact tests were performed to assess the modification's validity,in which ARMOX 500T steel plates were subjected to perpendicular impacts from 7.62×39 mm steel-cored rounds under various velocities.Frequent target failure by soft plugging was observed,as well as the brittle shatter of the hard steel core.Key properties of the recovered plugs including their mass,length and diameter were measured and reported along with the projectiles'residual velocities.Additionally,independent data from the open literature were included in the analysis for further validation.The original Forrestal-Warren model and the novel effective thickness modification were then used to establish the relationship between impact and residual velocities,as well as to determine the ballistic limit velocity.The comparison revealed that the proposed approach significantly improves the model's accuracy,showing a strong correlation with experimental data and reducing deviations to within a few percent.This enhancement highlights the potential of the effective thickness term,which could also be applied to other predictive models to extend their applicability range.Further exploration into other armor steels and impact conditions is recommended to assess the method's versatility.
基金Projects(52008403,52378421)supported by the National Natural Science Foundation of ChinaProject(2022-Key-10)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(202207)supported by the Hunan Provincial Transportation Science and Technology,China。
文摘The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.
基金Heilongjiang Provincial Natural Science Foundation of China (LH2021F009)。
文摘Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process(AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16.
基金Project(2022m07020007)supported by the Key Research and Development Projects of Anhui Province,ChinaProjects(52174102,52074006,51404011,51874002,51974009)supported by the National Natural Science Foundation of China+1 种基金Project(2024cx1017)supported by the Graduate Innovation Fund of Anhui University of Science and Technology,ChinaProject(2024AH040067)supported by the Natural Science Research Project of Anhui Educational Committee,China。
文摘Aiming at the problem of deep surrounding rock instability induced by roadway excavation or mining disturbance,the true triaxial loading system was used to conduct graded cyclic maximum principal stress σ_(1) and intermediate principal stress σ_(2) tests on sandstone to simulate the effect of mining stress in actual underground engineering.The influences of each principal stress cycle on the mechanical properties,acoustic emission(AE)characteristics,and fracture characteristics of sandstone were analyzed.The damage characteristics of sandstone under true triaxial cyclic loading were studied.Furthermore,the damage constitutive model of rock mass under true triaxial cyclic loading was established based on AE cumulative ringing count.The quantitative investigation was conducted on cumulative-damage changes in circulating sandstone,which elucidated the mechanism of damage deterioration in sandstone subjected to true triaxial cyclic loading.The results show that the influence of the graded cycleσ_(1) on limit maximum principal strain ɛ_(1max) and limit minimum principal strainɛ_(3max) was significantly greater than that of the limit intermediate principal strain ɛ_(2max).Graded cycleσ_(2) had a greater impact onɛ_(2max) and a smaller impact onɛ_(3max).The elasticity modulus of sandstone decreased exponentially with the increased cyclic load amplitude,while the Poisson ratio increased linearly.b of AE showed a trend of increasing,decreasing,slightly fluctuating,and finally decreasing during cyclingσ_(1).b showed a trend of slight fluctuation,large fluctuation,and finally increase during cyclingσ_(2).Sandstone specimens experienced mainly tensile failure,tensile-shear composite failure,and mainly shear failure with increased initialσ_(2) orσ_(3).This was determined by analyzing the rise angle-average frequency of the AE parameter,corresponding to the rock specimens from splitting failure to shear failure.Besides,the mechanical damage behavior of sandstone under true triaxial cyclic loading could be well described by the established constitutive model.At the same time,it was found that the sandstone damage variable decreased with increasedσ_(2) during cyclingσ_(1).The damage variable decreased first and then increased with increasedσ_(3) during cyclingσ_(2).
基金supported by the National Natural Science Foundation of China(62375013).
文摘As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields.
基金Projects(42477162,52108347,52178371,52168046,52178321,52308383)supported by the National Natural Science Foundation of ChinaProjects(2023C03143,2022C01099,2024C01219,2022C03151)supported by the Zhejiang Key Research and Development Plan,China+6 种基金Project(LQ22E080010)supported by the Exploring Youth Project of Zhejiang Natural Science Foundation,ChinaProject(LR21E080005)supported by the Outstanding Youth Project of Natural Science Foundation of Zhejiang Province,ChinaProject(2022M712964)supported by the Postdoctoral Science Foundation of ChinaProject(2023AFB008)supported by the Natural Science Foundation of Hubei Province for Youth,ChinaProject(202203)supported by Engineering Research Centre of Rock-Soil Drilling&Excavation and Protection,Ministry of Education,ChinaProject(202305-2)supported by the Science and Technology Project of Zhejiang Provincial Communication Department,ChinaProject(2021K256)supported by the Construction Research Founds of Department of Housing and Urban-Rural Development of Zhejiang Province,China。
文摘This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.