There are a few studies on the use of ferro-nanofluids for enhanced oil recovery,despite their magnetic properties;hence,it is needed to study the adsorption of iron oxide(Fe2 O3 and Fe3 O4) nanoparticles(NPs) on rock...There are a few studies on the use of ferro-nanofluids for enhanced oil recovery,despite their magnetic properties;hence,it is needed to study the adsorption of iron oxide(Fe2 O3 and Fe3 O4) nanoparticles(NPs) on rock surfaces.This is important as the colloidal transport of NPs through the reservoir is subject to particle adsorption on the rock surface.Molecular dynamics simulation was used to determine the interfacial energy(strength) and adsorption of Fe2 O3 and Fe3 O4 nanofluids infused in reservoir sandstones.Fourier transform infrared spectroscopy and X-ray photon spectroscopy(XPS) were used to monitor interaction of silicate species with Fe2 O3 and Fe3 O4.The spectral changes show the variation of dominating silicate anions in the solution.Also,the XPS peaks for Si,C and Fe at 190,285 and 700 eV,respectively,are less distinct in the spectra of sandstone aged in the Fe3 O4 nanofluid,suggesting the intense adsorption of the Fe3 O4 with the crude oil.The measured IFT for brine/oil,Fe2 O3/oil and Fe3 O4/oil are 40,36.17 and 31 mN/m,respectively.Fe3 O4 infused with reservoir sandstone exhibits a higher silicate sorption capacity than Fe2 O3,due to their larger number of active surface sites and saturation magnetization,which accounts for the effectiveness of Fe3 O4 in reducing IFT.展开更多
Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tri...Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.展开更多
The effect of active species present in crude oil on the interfacial tension (IFT) behavior of alkali/synthetic surfactants/crude oil systems was studied. The system consisted of heavy alkyl benzene sulfonate, sodiu...The effect of active species present in crude oil on the interfacial tension (IFT) behavior of alkali/synthetic surfactants/crude oil systems was studied. The system consisted of heavy alkyl benzene sulfonate, sodium chloride, sodium hydrate and Daqing crude oil. Experimental results indicated that active species would diffuse from oil/aqueous interface to aqueous phase and finally an equilibrium could be reached in the system with increasing contact time. Moreover, the minimum IFT and equilibrium IFT values increased with increasing contact time and a linear relationship existed between dynamic IFT and f^-1/2 when IFT value approaching the minimum and after the minimum IFT was reached. This indicated that the dynamic IFT-time behavior was diffusion controlled. The oil and aqueous phases were analyzed by infrared (IR) spectroscopy. IR spectra of oil and aqueous phases illustrated that the content of active species in the oil phase decreased, but the content of active species in the aqueous phase increased after alkali reacted with crude oil. This indicated that the active species present in oil played an important role in reducing IFT.展开更多
Phase behavior of carbon dioxide/water binary mixtures plays an important role in various CO2-based industry processes. This work aims to screen a thermodynamic model out of a number of promising candidate models to c...Phase behavior of carbon dioxide/water binary mixtures plays an important role in various CO2-based industry processes. This work aims to screen a thermodynamic model out of a number of promising candidate models to capture the vapor–liquid equilibria, liquid–liquid equilibria, and phase densities of CO2/H2O mixtures. A comprehensive analysis reveals that Peng–Robinson equation of state (PR EOS) (Peng and Robinson 1976), Twu α function (Twu et al. 1991), Huron–Vidal mixing rule (Huron and Vidal 1979), and Abudour et al. (2013) volume translation model (Abudour et al. 2013) is the best model among the ones examined;it yields average absolute percentage errors of 5.49% and 2.90% in reproducing the experimental phase composition data and density data collected in the literature. After achieving the reliable modeling of phase compositions and densities, a new IFT correlation based on the aforementioned PR EOS model is proposed through a nonlinear regression of the measured IFT data collected from the literature over 278.15–477.59 K and 1.00–1200.96 bar. Although the newly proposed IFT correlation only slightly improves the prediction accuracy yielded by the refitted Chen and Yang (2019)’s correlation (Chen and Yang 2019), the proposed correlation avoids the inconsistent predictions present in Chen and Yang (2019)’s correlation and yields smooth IFT predictions.展开更多
Two-dimensional(2D) transition metal carbides, carbonitrides and nitrides, known as MXenes, are emerging quickly at the frontiers of 2D materials world. Their exotic properties such as the highest electrical conductiv...Two-dimensional(2D) transition metal carbides, carbonitrides and nitrides, known as MXenes, are emerging quickly at the frontiers of 2D materials world. Their exotic properties such as the highest electrical conductivity among all solution-processed 2 D materials, the best electromagnetic interference shielding performance outperforming that of copper or aluminum at a nanoscale thickness, as well as the highest volumetric capacitance for pseudocapacitors, have been attracting extensive fundamental research and applications. Their unique surface chemistries, that is, hydrophilic groups terminated on the surface of MXenes after etching and delamination, enable plenty of opportunities for assembling into MXene building blocks. Particularly, assembling at liquid–liquid, liquid–solid, liquid–air, and solid–solid interfaces allows the efficient fabrication of various structures, including MXene surfactants, MXene heterostructures, MXene transparent films. Interfacial assembly of MXenes is of significance in unveiling more versatilities of MXenes as well as impacts on novel MXene-based architectures, based on which enhanced performance of devices is achieved. As such, this review focuses on the interfacial assembly of MXenes, explaining mechanisms behind various assembling and providing classical examples for corresponding interfacial assembling techniques. Applications of these as-assembled architectures are also discussed in brief. We believe this review may shed light on the interfacial chemistry of MXenes, thus guiding more efficient fabrication of MXene-based functional films/coatings/electrodes/devices.展开更多
The oil/water interfacial properties of crude oil emulsions formed by alkaline/surfactant/ polymer(ASP) flooding in the Daqing Oilfield were investigated in this paper by the measurement of interfacial tension,inter...The oil/water interfacial properties of crude oil emulsions formed by alkaline/surfactant/ polymer(ASP) flooding in the Daqing Oilfield were investigated in this paper by the measurement of interfacial tension,interfacial shear viscosity and Zeta potential of the oil/water system.The result showed that both NaOH and Na_2CO_3 could react with acid substances in the crude oil to produce interfacially active components,which are adsorbed on the interfaces between the aqueous phase and oil phase, resulting in a decrease of the interfacial tension,negatively charging the surface of oil droplets,but making little change in the interfacial shear viscosity.For the same ionic strength of NaOH and Na_2CO_3, the interfacial tension of NaOH solution-crude oil system is lower,but the interfacial shear viscosity of NaOH solution-crude oil system is higher,than that of Na_2CO_3 solution-crude oil system.The negative value of the Zeta potential on the surface of the oil droplets is large.Accordingly,the O/W emulsion of NaOH solution-crude oil system is more stable than that of Na_2CO_3 solution-crude oil system.展开更多
Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment ...Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment of produced crude. The alkali added forms stable water-in-crude oil emulsion, hence de-emulsification process is necessary to separate oil and water. The problems in enhanced oil recovery with ASP flooding were investigated in laboratory by using fractions of Daqing crude oil. The oil was separated into aliphatics, aromatics, resin and asphaltene fractions. These fractions were then mixed with an additive-free jet fuel to form model oils. The interfacial properties, such as interfacial tension and interracial pressure of the systems were also measured, which together with the molecular parameters of the fractions were all used to investigate the problems in the enhanced oil recovery. In our work, it was found that sodium hydroxide solution reacts with the acidic hydrogen in the fractions of crude oil and forms soap-like interfacially active components, which accumulate at the crude oil-water interface.展开更多
Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-f...Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.展开更多
The high-efficient development of shale oil is one of the urgent problems in the petroleum industry. The technology of CO_(2) enhanced oil recovery(EOR) has shown significant effects in developing shale oil. The effec...The high-efficient development of shale oil is one of the urgent problems in the petroleum industry. The technology of CO_(2) enhanced oil recovery(EOR) has shown significant effects in developing shale oil. The effects of several glycol ether additives with low molecular weight on the interactions between CO_(2) and oil were investigated here. The solubility of glycol ether additive in CO_(2) was firstly characterized. Then,the effects of glycol ether additives on the interfacial tension(IFT) between CO_(2) and hexadecane and the volume expansion and extraction performance between CO_(2) and hexadecane under different pressures was investigated. The experimental results show that diethylene glycol dimethyl ether(DEG), triethylene glycol dimethyl ether(TEG), and tetraethylene glycol dimethyl ether(TTEG) all have low cloud point pressure and high affinity with CO_(2). Under the same mass fraction, DGE has the best effect to reduce the IFT between hexadecane and CO_(2) by more than 30.0%, while an overall reduction of 20.0%-30.0% for TEG and 10.0%-20.0% for TTEG. A new method to measure the extraction and expansion rates has been established and can calculate the swelling factor accurately. After adding 1.0% DEG, the expansion and extraction amounts of CO_(2) for hexadecane are respectively increased to 1.75 times and 2.25 times. The results show that glycol ether additives assisted CO_(2) have potential application for EOR. This study can provide theoretical guidance for the optimization of CO_(2) composite systems for oil displacement.展开更多
Despite advances in renewable energy sources, the world's current infrastructure and consumption patterns still heavily depend on crude oil. Enhanced oil recovery(EOR) is a crucial method for significantly increas...Despite advances in renewable energy sources, the world's current infrastructure and consumption patterns still heavily depend on crude oil. Enhanced oil recovery(EOR) is a crucial method for significantly increasing the amount of crude oil extracted from mature and declining oil fields. Nanomaterials have shown great potential in improving EOR methods due to their unique properties, such as high surface area, tunable surface chemistry, and the ability to interact at the molecular level with fluids and rock surfaces. This study examines the potential use of incorporating ethoxylated molybdenum disulfide with a unique three-dimensional flower-like morphology for overcoming the challenges associated with oil recovery from reservoirs characterized by complex pore structures and low permeability. The synthesized nanomaterial features a chemical composition that encompasses a polar ethoxy group linking molybdenum disulfide nanosheets and an alkylamine chain. The ethoxy group promotes interactions with water molecules through hydrogen bonding and electrostatic forces, disrupting the cohesive forces among water molecules and reduction surface tension at the oil-water interface. As a result, the nanomaterial achieves an ultra-low interfacial tension of 10^(-3) mN/m. Core flooding experiments demonstrate a significant oil recovery of approximately 70% at a concentration as low as 50 ppm. This research paves the way for the design and synthesis of advanced extended surfactant-like nanomaterials,offering a promising avenue for enhancing oil recovery efficiency.展开更多
Low dosage kinetic hydrate inhibitors(KHIs)are a kind of alternative chemical additives to prevent gas hydrate formation in oil&gas production wells and transportation pipelines.In this work,a series of KHIs were ...Low dosage kinetic hydrate inhibitors(KHIs)are a kind of alternative chemical additives to prevent gas hydrate formation in oil&gas production wells and transportation pipelines.In this work,a series of KHIs were experimentally synthesized with N-vinyl caprolactam(N-VCap)and vinyl ether including vinyl ether,vinyl n-butyl ether,vinyl isobutyl ether,triethylene glycol divinyl ether,with the mole ratio ranging from 9:1 to 5:5.The inhibition performance of new-synthesized KHIs on the formation process of methane hydrate were examined and compared with that of commercial N-vinyl caprolactam PVCap.Several ethylenediamine reagents were used as synergists and tested to improve the inhibition capacity of new-synthesized KHIs.The experimental results demonstrate that the introduction of ether groups on PVCap improves the performance of hydrate inhibitors.PVCap-VNBE(N-VCap:vinyl n-butyl ether=5:5)shows the best inhibition performance for methane hydrate,which could extend the TVO to 1251 min under 6 K subcooling.N,N'-dimethylethylenediamine shows the best synergistic effect for PVCap-VNBE(5:5),and extends the TVO by 2.75 times at 7 K subcooling.Additionally,the relationship between hydrate inhibition performance and interfacial tension of newly-synthesized KHIs under high pressure were studied.It shows that the lower interfacial tension of KHIs would result in longer onset time,exhibiting better inhibition performance.展开更多
Surfactant-based oil recovery processes are employed to lower the interfacial tension in immiscible displacement processes,change the wettability of rock to a more water-wet system and emulsify the oil to displace it ...Surfactant-based oil recovery processes are employed to lower the interfacial tension in immiscible displacement processes,change the wettability of rock to a more water-wet system and emulsify the oil to displace it in subsurface porous media.Furthermore,these phenomena can reduce the capillary pressure and enhance spontaneous imbibition.The key factors affecting such immiscible displacement process are temperature,salinity and p H of the fluids,surfactant concentration and adsorption.Therefore,before any surfactant flooding process is applied,extensive studies of fluid-fluid and rock-fluid interactions are needed.The use of other chemicals along with surfactants in chemical enhanced oil recovery(c EOR)processes have been widely considered to exploit the synergy of individual chemicals and complement the weakness arises from each of them during immiscible displacement of fluids in porous media.Therefore,such combinations of chemicals lead to alkaline-surfactant(AS),surfactantpolymer(SP),alkaline-surfactant-polymer(ASP),and nanoparticle-surfactant(NS)flooding processes,among others.In this review study,we categorised the role and displacement mechanisms of surfactants and discussed the key factors to be considered for analysing the fluid displacement in porous media.展开更多
In recent years,production from tight oil reservoirs has increasingly supplemented production from conventional oil resources.Oil-wet formations account for a considerable proportion of tight oil reservoirs.Surfactant...In recent years,production from tight oil reservoirs has increasingly supplemented production from conventional oil resources.Oil-wet formations account for a considerable proportion of tight oil reservoirs.Surfactant can change wettability and reduce interfacial tension,thus resulting in a better oil recovery.In this manuscript,a nonionic surfactant was introduced for tight oil-wet reservoirs.The oil recovery in the oil-wet sandstone due to spontaneous imbibition was 8.59%lower than that of the waterwet sandstone due to surfactant.The 0.1%surfactant solution corresponded to the highest imbibition recovery rate of 27.02%from the oil-wet sample.With the surfactant treatment,the treated core quickly changed from weakly oil-wet to weakly water-wet.The capillary force acted as the driving force and promoted imbibition.The optimal surfactant adsorption quantity in the oil-wet sandstone was observed in the sample at concentrations ranging from 0.1%to 0.3%,which also corresponded to the highest oil recovery.Analysis of the inverse Bond number NB-1 suggested that the driving force was gravity for brine imbibition in the oil-wet cores and that it was capillary force for surfactant imbibition in the oil-wet cores.When the surfactant concentration was lower than the critical micelle concentration,the surfactant concentration was negatively correlated with the inverse Bond number and positively correlated with the oil recovery rate.When the surfactant concentration was higher than the critical micelle concentration,the oil recovery increased with a smaller interfacial tension.Nuclear magnetic resonance suggested that the movable pore and pore throat size in the oil-wet sample decreased from 0.363 mm in the untreated rock to 0.326 mm with the surfactant treatment,which indicated that the surfactant improved the flow capacity of the oil.The findings of this study can help to better understand the adsorption impact of surfactants on the characteristics of the oil/water and solid/liquid interfaces.The imbibition mechanism in oil-wet tight sandstone reservoirs was further revealed.These systematic approaches help to select appropriate surfactants for better recovery in oil-wet tight sandstone reservoirs through imbibition.展开更多
In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized...In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well.展开更多
The application of nanoparticles(NPs) in enhanced oil recovery(EOR) offers a practical approach to resolving some surface-related problems encountered in contemporary technological processes. In this study, graphene o...The application of nanoparticles(NPs) in enhanced oil recovery(EOR) offers a practical approach to resolving some surface-related problems encountered in contemporary technological processes. In this study, graphene oxide nanosheets(GONs) were synthesized by Hummer's method and, then, were subjected to surface modification by hexamethyldisilazane(HMDS) and diazonium sulfonic(DS) compounds. The new combination was known as GO-Su-HMDS. The potential stability of GO-Su-HMDS nanofluids(NFs) was investigated using the zeta(ζ) potential test. A comparative study of the effect of the synthesized NFs on wettability alteration of the reservoir rock was performed using interfacial tension(IFT) and contact angle experiments. According to the results of this study, the contact angle decreased from the initial value of 161.(oil wet) to 35.(water wet). In addition, IFT decreased from18.45 mN/m for deionized(DI) water to 8.8 mN/m for 500 ppm GO-Su-HMDS NF. Moreover, the results of flooding experiments showed that the NPs of a GO-Su-HMDS concentration of 400 and 500 ppm could increase the oil recovery by 20% and 19%, respectively. The experimental results showed that GO-SuHMDS NFs with a concentration of 500 ppm have the best efficiency in terms of altering the wettability of the rock from oil wet to water wet. Thus, it can be said that this nanofluid can reduce the contact angle and IFT and also increase the sweeping efficiency of oil.展开更多
A novel nanofluid of modified carbon black(MCB)nanoparticles was initially developed for enhanced oil recovery(EOR)in low permeability reservoirs.The MCB nanoparticles were obtained via a three-step reaction involving...A novel nanofluid of modified carbon black(MCB)nanoparticles was initially developed for enhanced oil recovery(EOR)in low permeability reservoirs.The MCB nanoparticles were obtained via a three-step reaction involving modification by oxidation,acyl chlorination,and activated grafting.MCB nano-particles were spherically dispersed,with an average size of 72.3 nm.Compared with carbon black(CB)nanoparticles,dispersed MCB nanoparticles can effectively reduce the oil-water interfacial tension(IFT)to 10^(-2)mN/m and change the surface wettability of sand particles.Based on the results of core flooding experiments,the MCB nanoparticles exhibited a better EOR capacity than surfactants and CB nano-particles,and the final oil recovery was significantly increased by 27.27%.The core scanning test showed that the MCB nanoparticles could plug high permeability channels by adsorbing onto the surfaces of sand particles and forming larger aggregates that bridge across pores or throats,resulting in a higher swept volume.The synergistic effects of improved swept volume and oil displacement efficiency were the EOR mechanisms of the MCB nanoparticles.The studies indicate that these MCB nanoparticles have excellent potential for EOR in low permeability reservoirs.展开更多
This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial t...This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial tension(IFT),contact angle,Zeta potential,and dynamic displacement measurements were performed at various NP mass fractions and brine salinities.The U.S.Bureau of Mines(USBM)index was used to quantify the wettability alteration.Furthermore,the NP stability and retention and the effect of enhanced oil recovery by nanofluid were examined.The results showed that LSW immiscible displacement with NPs altered the wettability toward more water wet.With the decreasing brine salinity and increasing NP mass fraction,the IFT and contact angle decreased.The wettability alteration intensified most as the brine salinity decreased to 4000 mg/L and the NP mass fraction increased to 0.075%.Under these conditions,the resulting incremental oil recovery factor was approximately 13 percentage points.When the brine salinity was 4000 mg/L and the NP mass fraction was 0.025%,the retention of NPs caused the minimum damage to permeability.展开更多
To study the wall-sticking phenomenon and prevent pipeline blockage accidents,two analytical methods are used to evaluate the influence of different crude oil components on the wall-sticking occurrence temperature(WSO...To study the wall-sticking phenomenon and prevent pipeline blockage accidents,two analytical methods are used to evaluate the influence of different crude oil components on the wall-sticking occurrence temperature(WSOT).The WSOT and the interactions among oil,water,and surface solids are measured and calculated by various devices under different values of the wax content,water pH,and salinity.The results show that there is greater correlation between the wax content and WSOT than between resins/asphaltenes and WSOT.Furthermore,the wax content,water pH,and salinity have different effects on WSOT.There is generally a positive correlation between wax content and WSOT,whereas the maximum WSOT occurs when the water pH is in the range 5.7–6.5,and decreases under more acidic or alkaline conditions.As the salinity increases,WSOT decreases slightly,but quickly becomes saturated.In terms of interactions,variations in the interfacial tension and adhesion work with pH and salinity are consistent with that of WSOT,while the contact angle exhibits the opposite relation.展开更多
In this work, an experimental study combined with numerical simulation was conducted to investigate the potential of chemically enhanced water alternating gas (CWAG) injection as a new enhanced oil recovery method. ...In this work, an experimental study combined with numerical simulation was conducted to investigate the potential of chemically enhanced water alternating gas (CWAG) injection as a new enhanced oil recovery method. The unique feature of this new method is that it uses alkaline, surfactant, and polymer additives as a chemical slug which is injected during the water alternating gas (WAG) process to reduce the interfacial tension (IFT) and simultaneously improve the mobility ratio. In essence, the proposed CWAG process involves a combination of chemical flooding and immiscible carbon dioxide (CO2) injection and helps in IFT reduction, water blocking reduction, mobility control, oil swelling, and oil viscosity reduction due to CO2 dissolution. Its performance was compared with the conventional immiscible water alter- nating gas (I-WAG) flooding. Oil recovery utilizing CWAG was better by 26 % of the remaining oil in place after waterflooding compared to the recovery using WAG conducted under similar conditions. The coreflood data (cumulative oil and water production) were history mat- ched via a commercial simulator by adjusting the relative permeability curves and assigning the values of the rock and fluid properties such as porosity, permeability, and the experimentally determined IFT data. History matching ofthe coreflood model helped us optimize the experiments and was useful in determining the importance of the parameters influencing sweep efficiency in the CWAG process. The effectiveness of the CWAG process in pro- viding enhancement of displacement efficiency is evident in the oil recovery and pressure response observed in the coreflood. The results of sensitivity analysis on CWAG slug patterns show that the alkaline-surfactant-polymer injection is more beneficial after CO2 slug injection due to oil swelling and viscosity reduction. The CO2 slug size analysis shows that there is an optimum CO2 slug size, around 25 % pore volume which leads to a maximum oil recovery in the CWAG process. This study shows that the ultralow IFT system, i.e., IFT equaling 10 2 or 10 3 mN/ m, is a very important parameter in CWAG process since the water blocking effect can be minimized.展开更多
The use of nanoparticles is considered promising for enhanced oil recovery(EOR),especially when they are combined with surfactants.However,the combination of nano-sized material with surface-active ionic liquids(SAILs...The use of nanoparticles is considered promising for enhanced oil recovery(EOR),especially when they are combined with surfactants.However,the combination of nano-sized material with surface-active ionic liquids(SAILs)is an unexplored EOR method.In this work,the advantages of mixing Al2O3 nanoparticles with the SAIL 1-dodecylpyridinium chloride were investigated.Stable nanofluids in brine could only be achieved using the polymer polyvinylpyrrolidone(PVP)as a stabilizing agent.It was found that the addition of nanoparticles(and PVP)to the surfactant formulation helped to:slightly increase its viscosity,enhance its water-oil interfacial tension(IFT)reduction capacity,and reduce the adsorption on carbonate rocks(adsorption on sandstone was found to be excessive).IFT was selected as target property to minimize for the design of EOR formulations.Core flooding tests were carried out with surfactant(0.5 wt%[C_(12)py]Cl),surfactant-polymer(0.5 wt%[C_(12)py]Cl,1.0 wt%PVP)and nanofluid(0.05 wt%Al_(2)O_(3),1.0 wt%PVP,0.5 wt%[C12py]Cl)formulations in brine(0.5 wt%NaCl).Additional oil recoveries of 3.4%,7.4%and 12.0%OOIP were achieved,respectively,the nanofluid formulation being the most promising for the application.Moreover,it was found capable of changing the wettability of carbonate rocks from oilwet to intermediate-wet.The significance of this work lies in showing the new possibilities resulting from the combination of SAILs and nanoparticles for EOR,specifically the combination of[C_(12)py]Cl with Al_(2)O_(3).展开更多
文摘There are a few studies on the use of ferro-nanofluids for enhanced oil recovery,despite their magnetic properties;hence,it is needed to study the adsorption of iron oxide(Fe2 O3 and Fe3 O4) nanoparticles(NPs) on rock surfaces.This is important as the colloidal transport of NPs through the reservoir is subject to particle adsorption on the rock surface.Molecular dynamics simulation was used to determine the interfacial energy(strength) and adsorption of Fe2 O3 and Fe3 O4 nanofluids infused in reservoir sandstones.Fourier transform infrared spectroscopy and X-ray photon spectroscopy(XPS) were used to monitor interaction of silicate species with Fe2 O3 and Fe3 O4.The spectral changes show the variation of dominating silicate anions in the solution.Also,the XPS peaks for Si,C and Fe at 190,285 and 700 eV,respectively,are less distinct in the spectra of sandstone aged in the Fe3 O4 nanofluid,suggesting the intense adsorption of the Fe3 O4 with the crude oil.The measured IFT for brine/oil,Fe2 O3/oil and Fe3 O4/oil are 40,36.17 and 31 mN/m,respectively.Fe3 O4 infused with reservoir sandstone exhibits a higher silicate sorption capacity than Fe2 O3,due to their larger number of active surface sites and saturation magnetization,which accounts for the effectiveness of Fe3 O4 in reducing IFT.
基金The authors would like to acknowledge the Bu Ali Sina University and the Iran National Science Foundation:INSF,under Grant number of 99031559,for their financial supports.
文摘Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.
基金National Basic Research Program of China(973 Program)
文摘The effect of active species present in crude oil on the interfacial tension (IFT) behavior of alkali/synthetic surfactants/crude oil systems was studied. The system consisted of heavy alkyl benzene sulfonate, sodium chloride, sodium hydrate and Daqing crude oil. Experimental results indicated that active species would diffuse from oil/aqueous interface to aqueous phase and finally an equilibrium could be reached in the system with increasing contact time. Moreover, the minimum IFT and equilibrium IFT values increased with increasing contact time and a linear relationship existed between dynamic IFT and f^-1/2 when IFT value approaching the minimum and after the minimum IFT was reached. This indicated that the dynamic IFT-time behavior was diffusion controlled. The oil and aqueous phases were analyzed by infrared (IR) spectroscopy. IR spectra of oil and aqueous phases illustrated that the content of active species in the oil phase decreased, but the content of active species in the aqueous phase increased after alkali reacted with crude oil. This indicated that the active species present in oil played an important role in reducing IFT.
文摘Phase behavior of carbon dioxide/water binary mixtures plays an important role in various CO2-based industry processes. This work aims to screen a thermodynamic model out of a number of promising candidate models to capture the vapor–liquid equilibria, liquid–liquid equilibria, and phase densities of CO2/H2O mixtures. A comprehensive analysis reveals that Peng–Robinson equation of state (PR EOS) (Peng and Robinson 1976), Twu α function (Twu et al. 1991), Huron–Vidal mixing rule (Huron and Vidal 1979), and Abudour et al. (2013) volume translation model (Abudour et al. 2013) is the best model among the ones examined;it yields average absolute percentage errors of 5.49% and 2.90% in reproducing the experimental phase composition data and density data collected in the literature. After achieving the reliable modeling of phase compositions and densities, a new IFT correlation based on the aforementioned PR EOS model is proposed through a nonlinear regression of the measured IFT data collected from the literature over 278.15–477.59 K and 1.00–1200.96 bar. Although the newly proposed IFT correlation only slightly improves the prediction accuracy yielded by the refitted Chen and Yang (2019)’s correlation (Chen and Yang 2019), the proposed correlation avoids the inconsistent predictions present in Chen and Yang (2019)’s correlation and yields smooth IFT predictions.
文摘Two-dimensional(2D) transition metal carbides, carbonitrides and nitrides, known as MXenes, are emerging quickly at the frontiers of 2D materials world. Their exotic properties such as the highest electrical conductivity among all solution-processed 2 D materials, the best electromagnetic interference shielding performance outperforming that of copper or aluminum at a nanoscale thickness, as well as the highest volumetric capacitance for pseudocapacitors, have been attracting extensive fundamental research and applications. Their unique surface chemistries, that is, hydrophilic groups terminated on the surface of MXenes after etching and delamination, enable plenty of opportunities for assembling into MXene building blocks. Particularly, assembling at liquid–liquid, liquid–solid, liquid–air, and solid–solid interfaces allows the efficient fabrication of various structures, including MXene surfactants, MXene heterostructures, MXene transparent films. Interfacial assembly of MXenes is of significance in unveiling more versatilities of MXenes as well as impacts on novel MXene-based architectures, based on which enhanced performance of devices is achieved. As such, this review focuses on the interfacial assembly of MXenes, explaining mechanisms behind various assembling and providing classical examples for corresponding interfacial assembling techniques. Applications of these as-assembled architectures are also discussed in brief. We believe this review may shed light on the interfacial chemistry of MXenes, thus guiding more efficient fabrication of MXene-based functional films/coatings/electrodes/devices.
基金supported by the National Basic Research Program of China (973 Program) (Grant No.2006CB705805)the National Key Scientific and Technological Project (863 Project)(Grant No.2008ZX05011)
文摘The oil/water interfacial properties of crude oil emulsions formed by alkaline/surfactant/ polymer(ASP) flooding in the Daqing Oilfield were investigated in this paper by the measurement of interfacial tension,interfacial shear viscosity and Zeta potential of the oil/water system.The result showed that both NaOH and Na_2CO_3 could react with acid substances in the crude oil to produce interfacially active components,which are adsorbed on the interfaces between the aqueous phase and oil phase, resulting in a decrease of the interfacial tension,negatively charging the surface of oil droplets,but making little change in the interfacial shear viscosity.For the same ionic strength of NaOH and Na_2CO_3, the interfacial tension of NaOH solution-crude oil system is lower,but the interfacial shear viscosity of NaOH solution-crude oil system is higher,than that of Na_2CO_3 solution-crude oil system.The negative value of the Zeta potential on the surface of the oil droplets is large.Accordingly,the O/W emulsion of NaOH solution-crude oil system is more stable than that of Na_2CO_3 solution-crude oil system.
文摘Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield, northeast China has been successful, but there are new problems in the treatment of produced crude. The alkali added forms stable water-in-crude oil emulsion, hence de-emulsification process is necessary to separate oil and water. The problems in enhanced oil recovery with ASP flooding were investigated in laboratory by using fractions of Daqing crude oil. The oil was separated into aliphatics, aromatics, resin and asphaltene fractions. These fractions were then mixed with an additive-free jet fuel to form model oils. The interfacial properties, such as interfacial tension and interracial pressure of the systems were also measured, which together with the molecular parameters of the fractions were all used to investigate the problems in the enhanced oil recovery. In our work, it was found that sodium hydroxide solution reacts with the acidic hydrogen in the fractions of crude oil and forms soap-like interfacially active components, which accumulate at the crude oil-water interface.
基金supported by the Open Fund of Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil&Gas Reservoirs(No.KFJJ-TZ-2020-2)the National Natural Science Foundation of China(No.52104030)+1 种基金the Key Research and Development Program of Shaanxi(No.2022 KW-35)the China Fundamental Research Funds for the Central Universities。
文摘Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.
基金financial supports from the National Natural Science Foundation of China (Grant Nos. 42090024, 52174049)the Natural Science Foundation of Shandong Province of China (No. ZR2019MEE058)。
文摘The high-efficient development of shale oil is one of the urgent problems in the petroleum industry. The technology of CO_(2) enhanced oil recovery(EOR) has shown significant effects in developing shale oil. The effects of several glycol ether additives with low molecular weight on the interactions between CO_(2) and oil were investigated here. The solubility of glycol ether additive in CO_(2) was firstly characterized. Then,the effects of glycol ether additives on the interfacial tension(IFT) between CO_(2) and hexadecane and the volume expansion and extraction performance between CO_(2) and hexadecane under different pressures was investigated. The experimental results show that diethylene glycol dimethyl ether(DEG), triethylene glycol dimethyl ether(TEG), and tetraethylene glycol dimethyl ether(TTEG) all have low cloud point pressure and high affinity with CO_(2). Under the same mass fraction, DGE has the best effect to reduce the IFT between hexadecane and CO_(2) by more than 30.0%, while an overall reduction of 20.0%-30.0% for TEG and 10.0%-20.0% for TTEG. A new method to measure the extraction and expansion rates has been established and can calculate the swelling factor accurately. After adding 1.0% DEG, the expansion and extraction amounts of CO_(2) for hexadecane are respectively increased to 1.75 times and 2.25 times. The results show that glycol ether additives assisted CO_(2) have potential application for EOR. This study can provide theoretical guidance for the optimization of CO_(2) composite systems for oil displacement.
基金funded by the National Natural Science Foundation of China (No. 52174046)。
文摘Despite advances in renewable energy sources, the world's current infrastructure and consumption patterns still heavily depend on crude oil. Enhanced oil recovery(EOR) is a crucial method for significantly increasing the amount of crude oil extracted from mature and declining oil fields. Nanomaterials have shown great potential in improving EOR methods due to their unique properties, such as high surface area, tunable surface chemistry, and the ability to interact at the molecular level with fluids and rock surfaces. This study examines the potential use of incorporating ethoxylated molybdenum disulfide with a unique three-dimensional flower-like morphology for overcoming the challenges associated with oil recovery from reservoirs characterized by complex pore structures and low permeability. The synthesized nanomaterial features a chemical composition that encompasses a polar ethoxy group linking molybdenum disulfide nanosheets and an alkylamine chain. The ethoxy group promotes interactions with water molecules through hydrogen bonding and electrostatic forces, disrupting the cohesive forces among water molecules and reduction surface tension at the oil-water interface. As a result, the nanomaterial achieves an ultra-low interfacial tension of 10^(-3) mN/m. Core flooding experiments demonstrate a significant oil recovery of approximately 70% at a concentration as low as 50 ppm. This research paves the way for the design and synthesis of advanced extended surfactant-like nanomaterials,offering a promising avenue for enhancing oil recovery efficiency.
基金supported by the National Natural Science Foundation of China(Grant No.22127812,22278433,U20B6005,22178379)Hainan Province Science and Technology Special Fund(Grant NO.ZDKJ2021026)。
文摘Low dosage kinetic hydrate inhibitors(KHIs)are a kind of alternative chemical additives to prevent gas hydrate formation in oil&gas production wells and transportation pipelines.In this work,a series of KHIs were experimentally synthesized with N-vinyl caprolactam(N-VCap)and vinyl ether including vinyl ether,vinyl n-butyl ether,vinyl isobutyl ether,triethylene glycol divinyl ether,with the mole ratio ranging from 9:1 to 5:5.The inhibition performance of new-synthesized KHIs on the formation process of methane hydrate were examined and compared with that of commercial N-vinyl caprolactam PVCap.Several ethylenediamine reagents were used as synergists and tested to improve the inhibition capacity of new-synthesized KHIs.The experimental results demonstrate that the introduction of ether groups on PVCap improves the performance of hydrate inhibitors.PVCap-VNBE(N-VCap:vinyl n-butyl ether=5:5)shows the best inhibition performance for methane hydrate,which could extend the TVO to 1251 min under 6 K subcooling.N,N'-dimethylethylenediamine shows the best synergistic effect for PVCap-VNBE(5:5),and extends the TVO by 2.75 times at 7 K subcooling.Additionally,the relationship between hydrate inhibition performance and interfacial tension of newly-synthesized KHIs under high pressure were studied.It shows that the lower interfacial tension of KHIs would result in longer onset time,exhibiting better inhibition performance.
基金the Faculty of Engineering University of Khartoum,Sudan,for the financial support of his studies at the University of Aberdeen
文摘Surfactant-based oil recovery processes are employed to lower the interfacial tension in immiscible displacement processes,change the wettability of rock to a more water-wet system and emulsify the oil to displace it in subsurface porous media.Furthermore,these phenomena can reduce the capillary pressure and enhance spontaneous imbibition.The key factors affecting such immiscible displacement process are temperature,salinity and p H of the fluids,surfactant concentration and adsorption.Therefore,before any surfactant flooding process is applied,extensive studies of fluid-fluid and rock-fluid interactions are needed.The use of other chemicals along with surfactants in chemical enhanced oil recovery(c EOR)processes have been widely considered to exploit the synergy of individual chemicals and complement the weakness arises from each of them during immiscible displacement of fluids in porous media.Therefore,such combinations of chemicals lead to alkaline-surfactant(AS),surfactantpolymer(SP),alkaline-surfactant-polymer(ASP),and nanoparticle-surfactant(NS)flooding processes,among others.In this review study,we categorised the role and displacement mechanisms of surfactants and discussed the key factors to be considered for analysing the fluid displacement in porous media.
基金financially supported by the National Key R&D Program of China(No.2019YFA0708700)National Science Fund of China(No.51804327,51834010)+1 种基金Climb Taishan Scholar Program in Shandong Province(No.tspd20161004)the Fundamental Research Funds for the Central Universities(No.18CX02026A,24720182026A)。
文摘In recent years,production from tight oil reservoirs has increasingly supplemented production from conventional oil resources.Oil-wet formations account for a considerable proportion of tight oil reservoirs.Surfactant can change wettability and reduce interfacial tension,thus resulting in a better oil recovery.In this manuscript,a nonionic surfactant was introduced for tight oil-wet reservoirs.The oil recovery in the oil-wet sandstone due to spontaneous imbibition was 8.59%lower than that of the waterwet sandstone due to surfactant.The 0.1%surfactant solution corresponded to the highest imbibition recovery rate of 27.02%from the oil-wet sample.With the surfactant treatment,the treated core quickly changed from weakly oil-wet to weakly water-wet.The capillary force acted as the driving force and promoted imbibition.The optimal surfactant adsorption quantity in the oil-wet sandstone was observed in the sample at concentrations ranging from 0.1%to 0.3%,which also corresponded to the highest oil recovery.Analysis of the inverse Bond number NB-1 suggested that the driving force was gravity for brine imbibition in the oil-wet cores and that it was capillary force for surfactant imbibition in the oil-wet cores.When the surfactant concentration was lower than the critical micelle concentration,the surfactant concentration was negatively correlated with the inverse Bond number and positively correlated with the oil recovery rate.When the surfactant concentration was higher than the critical micelle concentration,the oil recovery increased with a smaller interfacial tension.Nuclear magnetic resonance suggested that the movable pore and pore throat size in the oil-wet sample decreased from 0.363 mm in the untreated rock to 0.326 mm with the surfactant treatment,which indicated that the surfactant improved the flow capacity of the oil.The findings of this study can help to better understand the adsorption impact of surfactants on the characteristics of the oil/water and solid/liquid interfaces.The imbibition mechanism in oil-wet tight sandstone reservoirs was further revealed.These systematic approaches help to select appropriate surfactants for better recovery in oil-wet tight sandstone reservoirs through imbibition.
文摘In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well.
文摘The application of nanoparticles(NPs) in enhanced oil recovery(EOR) offers a practical approach to resolving some surface-related problems encountered in contemporary technological processes. In this study, graphene oxide nanosheets(GONs) were synthesized by Hummer's method and, then, were subjected to surface modification by hexamethyldisilazane(HMDS) and diazonium sulfonic(DS) compounds. The new combination was known as GO-Su-HMDS. The potential stability of GO-Su-HMDS nanofluids(NFs) was investigated using the zeta(ζ) potential test. A comparative study of the effect of the synthesized NFs on wettability alteration of the reservoir rock was performed using interfacial tension(IFT) and contact angle experiments. According to the results of this study, the contact angle decreased from the initial value of 161.(oil wet) to 35.(water wet). In addition, IFT decreased from18.45 mN/m for deionized(DI) water to 8.8 mN/m for 500 ppm GO-Su-HMDS NF. Moreover, the results of flooding experiments showed that the NPs of a GO-Su-HMDS concentration of 400 and 500 ppm could increase the oil recovery by 20% and 19%, respectively. The experimental results showed that GO-SuHMDS NFs with a concentration of 500 ppm have the best efficiency in terms of altering the wettability of the rock from oil wet to water wet. Thus, it can be said that this nanofluid can reduce the contact angle and IFT and also increase the sweeping efficiency of oil.
基金supported by the National Key R&D Program of China(2018YFA0702400)National Natural Science Foundation of China(5207040347).
文摘A novel nanofluid of modified carbon black(MCB)nanoparticles was initially developed for enhanced oil recovery(EOR)in low permeability reservoirs.The MCB nanoparticles were obtained via a three-step reaction involving modification by oxidation,acyl chlorination,and activated grafting.MCB nano-particles were spherically dispersed,with an average size of 72.3 nm.Compared with carbon black(CB)nanoparticles,dispersed MCB nanoparticles can effectively reduce the oil-water interfacial tension(IFT)to 10^(-2)mN/m and change the surface wettability of sand particles.Based on the results of core flooding experiments,the MCB nanoparticles exhibited a better EOR capacity than surfactants and CB nano-particles,and the final oil recovery was significantly increased by 27.27%.The core scanning test showed that the MCB nanoparticles could plug high permeability channels by adsorbing onto the surfaces of sand particles and forming larger aggregates that bridge across pores or throats,resulting in a higher swept volume.The synergistic effects of improved swept volume and oil displacement efficiency were the EOR mechanisms of the MCB nanoparticles.The studies indicate that these MCB nanoparticles have excellent potential for EOR in low permeability reservoirs.
基金Kuwait University General Research Facilities (GE01/17,GE01/07,and GS03/01)for their support in conducting the necessary experimental work of this study。
文摘This study investigated experimentally the coupled effects of hydrophilic SiO_(2) nanoparticles(NPs)and low-salinity water(LSW)on the wettability of synthetic clay-free Berea sandstone.Capillary pressure,interfacial tension(IFT),contact angle,Zeta potential,and dynamic displacement measurements were performed at various NP mass fractions and brine salinities.The U.S.Bureau of Mines(USBM)index was used to quantify the wettability alteration.Furthermore,the NP stability and retention and the effect of enhanced oil recovery by nanofluid were examined.The results showed that LSW immiscible displacement with NPs altered the wettability toward more water wet.With the decreasing brine salinity and increasing NP mass fraction,the IFT and contact angle decreased.The wettability alteration intensified most as the brine salinity decreased to 4000 mg/L and the NP mass fraction increased to 0.075%.Under these conditions,the resulting incremental oil recovery factor was approximately 13 percentage points.When the brine salinity was 4000 mg/L and the NP mass fraction was 0.025%,the retention of NPs caused the minimum damage to permeability.
基金supported by the National Natural Science Foundation of China(NNFC,Grant No.51534007).
文摘To study the wall-sticking phenomenon and prevent pipeline blockage accidents,two analytical methods are used to evaluate the influence of different crude oil components on the wall-sticking occurrence temperature(WSOT).The WSOT and the interactions among oil,water,and surface solids are measured and calculated by various devices under different values of the wax content,water pH,and salinity.The results show that there is greater correlation between the wax content and WSOT than between resins/asphaltenes and WSOT.Furthermore,the wax content,water pH,and salinity have different effects on WSOT.There is generally a positive correlation between wax content and WSOT,whereas the maximum WSOT occurs when the water pH is in the range 5.7–6.5,and decreases under more acidic or alkaline conditions.As the salinity increases,WSOT decreases slightly,but quickly becomes saturated.In terms of interactions,variations in the interfacial tension and adhesion work with pH and salinity are consistent with that of WSOT,while the contact angle exhibits the opposite relation.
基金the EOR Center at University Technology Petronas for providing financial support
文摘In this work, an experimental study combined with numerical simulation was conducted to investigate the potential of chemically enhanced water alternating gas (CWAG) injection as a new enhanced oil recovery method. The unique feature of this new method is that it uses alkaline, surfactant, and polymer additives as a chemical slug which is injected during the water alternating gas (WAG) process to reduce the interfacial tension (IFT) and simultaneously improve the mobility ratio. In essence, the proposed CWAG process involves a combination of chemical flooding and immiscible carbon dioxide (CO2) injection and helps in IFT reduction, water blocking reduction, mobility control, oil swelling, and oil viscosity reduction due to CO2 dissolution. Its performance was compared with the conventional immiscible water alter- nating gas (I-WAG) flooding. Oil recovery utilizing CWAG was better by 26 % of the remaining oil in place after waterflooding compared to the recovery using WAG conducted under similar conditions. The coreflood data (cumulative oil and water production) were history mat- ched via a commercial simulator by adjusting the relative permeability curves and assigning the values of the rock and fluid properties such as porosity, permeability, and the experimentally determined IFT data. History matching ofthe coreflood model helped us optimize the experiments and was useful in determining the importance of the parameters influencing sweep efficiency in the CWAG process. The effectiveness of the CWAG process in pro- viding enhancement of displacement efficiency is evident in the oil recovery and pressure response observed in the coreflood. The results of sensitivity analysis on CWAG slug patterns show that the alkaline-surfactant-polymer injection is more beneficial after CO2 slug injection due to oil swelling and viscosity reduction. The CO2 slug size analysis shows that there is an optimum CO2 slug size, around 25 % pore volume which leads to a maximum oil recovery in the CWAG process. This study shows that the ultralow IFT system, i.e., IFT equaling 10 2 or 10 3 mN/ m, is a very important parameter in CWAG process since the water blocking effect can be minimized.
基金The authors acknowledge the Ministry of Science and Innovation and State Research Agency for financial support throughout project PGC2018-097342-B-I00,including European Regional Development Fund A.Al-Asadi acknowledges Sothern Technical University for financial support.
文摘The use of nanoparticles is considered promising for enhanced oil recovery(EOR),especially when they are combined with surfactants.However,the combination of nano-sized material with surface-active ionic liquids(SAILs)is an unexplored EOR method.In this work,the advantages of mixing Al2O3 nanoparticles with the SAIL 1-dodecylpyridinium chloride were investigated.Stable nanofluids in brine could only be achieved using the polymer polyvinylpyrrolidone(PVP)as a stabilizing agent.It was found that the addition of nanoparticles(and PVP)to the surfactant formulation helped to:slightly increase its viscosity,enhance its water-oil interfacial tension(IFT)reduction capacity,and reduce the adsorption on carbonate rocks(adsorption on sandstone was found to be excessive).IFT was selected as target property to minimize for the design of EOR formulations.Core flooding tests were carried out with surfactant(0.5 wt%[C_(12)py]Cl),surfactant-polymer(0.5 wt%[C_(12)py]Cl,1.0 wt%PVP)and nanofluid(0.05 wt%Al_(2)O_(3),1.0 wt%PVP,0.5 wt%[C12py]Cl)formulations in brine(0.5 wt%NaCl).Additional oil recoveries of 3.4%,7.4%and 12.0%OOIP were achieved,respectively,the nanofluid formulation being the most promising for the application.Moreover,it was found capable of changing the wettability of carbonate rocks from oilwet to intermediate-wet.The significance of this work lies in showing the new possibilities resulting from the combination of SAILs and nanoparticles for EOR,specifically the combination of[C_(12)py]Cl with Al_(2)O_(3).