The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and perf...The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and performance sta-bility across diverse environments, stringent requirements are placed on the dynamic range of its receiving system. This paper provides a detailed exposition of a field-programmable gate array (FPGA)-based automatic gain control (AGC) design for the spaceborne scatterometer. Implemented on an FPGA, the algo-rithm harnesses its parallel processing capabilities and high-speed performance to monitor the received echo signals in real time. Employing an adaptive AGC algorithm, the system gene-rates gain control codes applicable to the intermediate fre-quency variable attenuator, enabling rapid and stable adjust-ment of signal amplitudes from the intermediate frequency amplifier to an optimal range. By adopting a purely digital pro-cessing approach, experimental results demonstrate that the AGC algorithm exhibits several advantages, including fast con-vergence, strong flexibility, high precision, and outstanding sta-bility. This innovative design lays a solid foundation for the high-precision measurements of the Ocean 4A scatterometer, with potential implications for the future of spaceborne microwave scatterometers.展开更多
A mesh generating system has been developed in orde r to prepare large amounts of input data which are needed for easy implementation of a finite element analysis. This system consists of a Pre-Mesh Generator, an Auto...A mesh generating system has been developed in orde r to prepare large amounts of input data which are needed for easy implementation of a finite element analysis. This system consists of a Pre-Mesh Generator, an Automatic Mesh Generator and a Mesh Modifier. Pre-Mesh Generator produces the shape and sub-block information as input data of Automatic Mesh Generator by c arrying out various image processing with respect to the image information of th e drawing input using scanner. Automatic Mesh Generator generates mesh of trian gular elements in the arbitrarily shaped and multiple connected planar domain by using minimum necessary information. This generator has 3 methods of mesh gene ration for each sub-block, A) Regular Mesh Generation, B) Semi-Regular Mesh Ge neration and C) Irregular Mesh Generation. Any of them can be selected automati cally according to the external form of sub-block or the state of domain. Mesh Modifier projects and modifies the pattern of generated mesh by Automatic Mesh Generator as required. This system simplifies the user’s task while saving manp ower in carrying out the finite element analysis.展开更多
Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ...Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.展开更多
In June 2012,the UN conference on sustainable development "Rio+20" summarized the work of the world community in this direction for last 20 years and outlined the tasks for the future.The UN website contains...In June 2012,the UN conference on sustainable development "Rio+20" summarized the work of the world community in this direction for last 20 years and outlined the tasks for the future.The UN website contains enough information to estimate the importance of global problems and "green economy," taking into account a very complicated state of the global and Russian markets which are balancing on the verge of crisis.Unfortunately,the website does not contain the materials of the 6th civilization forum "Long-Term Strategy for Sustainable Development on the Basis of Partnership of Civilizations:Concepts,Strategy,Programs and Projects" within the bounds of "Rio+20" which has considered the problems of a dialogue and partnership in conditions of extensive globalization.These problems are covered in the Partnership of Civilizations Journal which is issued in the Russian,English and Arabian languages,including its Internet version.The International Informatization Academy (it has the general consultative status at the Economic and Social Council of the UN) and its 20-year activity in the sphere of informatization of the world and Russia on the way to the partnership of civilizations,are presented there[1].展开更多
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n...The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.展开更多
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ...Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.展开更多
文摘The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and performance sta-bility across diverse environments, stringent requirements are placed on the dynamic range of its receiving system. This paper provides a detailed exposition of a field-programmable gate array (FPGA)-based automatic gain control (AGC) design for the spaceborne scatterometer. Implemented on an FPGA, the algo-rithm harnesses its parallel processing capabilities and high-speed performance to monitor the received echo signals in real time. Employing an adaptive AGC algorithm, the system gene-rates gain control codes applicable to the intermediate fre-quency variable attenuator, enabling rapid and stable adjust-ment of signal amplitudes from the intermediate frequency amplifier to an optimal range. By adopting a purely digital pro-cessing approach, experimental results demonstrate that the AGC algorithm exhibits several advantages, including fast con-vergence, strong flexibility, high precision, and outstanding sta-bility. This innovative design lays a solid foundation for the high-precision measurements of the Ocean 4A scatterometer, with potential implications for the future of spaceborne microwave scatterometers.
文摘A mesh generating system has been developed in orde r to prepare large amounts of input data which are needed for easy implementation of a finite element analysis. This system consists of a Pre-Mesh Generator, an Automatic Mesh Generator and a Mesh Modifier. Pre-Mesh Generator produces the shape and sub-block information as input data of Automatic Mesh Generator by c arrying out various image processing with respect to the image information of th e drawing input using scanner. Automatic Mesh Generator generates mesh of trian gular elements in the arbitrarily shaped and multiple connected planar domain by using minimum necessary information. This generator has 3 methods of mesh gene ration for each sub-block, A) Regular Mesh Generation, B) Semi-Regular Mesh Ge neration and C) Irregular Mesh Generation. Any of them can be selected automati cally according to the external form of sub-block or the state of domain. Mesh Modifier projects and modifies the pattern of generated mesh by Automatic Mesh Generator as required. This system simplifies the user’s task while saving manp ower in carrying out the finite element analysis.
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProjects(42077267,42277174,52074164)supported by the National Natural Science Foundation of ChinaProject(2024JCCXSB01)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.
文摘In June 2012,the UN conference on sustainable development "Rio+20" summarized the work of the world community in this direction for last 20 years and outlined the tasks for the future.The UN website contains enough information to estimate the importance of global problems and "green economy," taking into account a very complicated state of the global and Russian markets which are balancing on the verge of crisis.Unfortunately,the website does not contain the materials of the 6th civilization forum "Long-Term Strategy for Sustainable Development on the Basis of Partnership of Civilizations:Concepts,Strategy,Programs and Projects" within the bounds of "Rio+20" which has considered the problems of a dialogue and partnership in conditions of extensive globalization.These problems are covered in the Partnership of Civilizations Journal which is issued in the Russian,English and Arabian languages,including its Internet version.The International Informatization Academy (it has the general consultative status at the Economic and Social Council of the UN) and its 20-year activity in the sphere of informatization of the world and Russia on the way to the partnership of civilizations,are presented there[1].
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation 2022M720419 to provide fund for conducting experiments。
文摘The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation under Grant No.2022M720419。
文摘Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.