The Flory-Huggins interaction parameter(χ1,2∞) and solubility parameter(δ2) and its hydrogen bonding sensing component(δh) were determined using inverse gas chromatography(IGC).These parameters were successfully u...The Flory-Huggins interaction parameter(χ1,2∞) and solubility parameter(δ2) and its hydrogen bonding sensing component(δh) were determined using inverse gas chromatography(IGC).These parameters were successfully used in the probes of chemical changes that occur during the oxidation of naphthenic and paraffinic base oils in a GC column.Changes in χ1,2∞ values reflect the different types of intermolecular interactions(dispersive,polar,hydrogen bonding) of the given lubricating base oil during oxidation.The obtained results showed that δh component of solubility parameter is the most important parameter for probing the oxidative-chemical changes during the oxidation of given lubricating oils.展开更多
Inverse gas chromatographic technique(IGC) was attempted as a new approach to follow the chem-ical changes that occur during lubricating base oil oxidation.Three groups of the oxidized base oils were pre-pared at diff...Inverse gas chromatographic technique(IGC) was attempted as a new approach to follow the chem-ical changes that occur during lubricating base oil oxidation.Three groups of the oxidized base oils were pre-pared at different oxygen flow rates,periods and temperatures according to IP48method.The corrected reten-tion volumes(VR) were calculated for a series of selected test solutes possessing different functional groups onthe oxidized base oils used as stationary phases.Kovats retention index(I),Flory-Huggins interaction parame-ter(κ1∞,2),and partial molar free energy of solution(ΔGL∞),were calculated for the given test solutes fromtheirVR.The relationships between theIvalues and the oxidation variables were plotted and discussed.Theobtained results were confirmed by potentiometric titration.The study reveals that the magnitudes of variationofI,κ1∞,2orΔG∞Lretention parameters depend on the oxidation degree of the base oil.Large differences be-tween theIvalues permit discrimination between the different oxidation steps.Key words: inverse gas chromatography(IGC);oxidation;lubricating base oil;Kovats retention展开更多
Nano-copper used as lubrication oil additive has good tribological property and active self-repairing effect for friction pairs. The reduction in liquid phase for preparing nano-additive is one of the most common meth...Nano-copper used as lubrication oil additive has good tribological property and active self-repairing effect for friction pairs. The reduction in liquid phase for preparing nano-additive is one of the most common method. Nano-copper was prepared by reduction in liquid phase. The different project and routine practice for preparing nano-copper were researched. The dispersion problem of nano-copper was investigated by surface treatment and high dispersion. The particles dimension, the dispersion stability and the purity of nano-copper were characterized by TEM and XRD. The conclusion indicates that the methods of the preparation and dispersion can obtain 20nm copper additive with good dispersion property in lubrication oil.展开更多
Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range...Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range of 50−700 N and a sliding speed range of 0.05−2.58 m/s were less than 0.14 and 2.8×10−6 mm3/mm,respectively.Stribeck-like curve and wear map were developed to describe the oil-lubrication mechanism and wear behavior.The equation of the dividing line between zones of safe and unsafe wear life was determined.Lubricating oil was squeezed into micro-cracks under severe wear conditions.In addition,the lubricating oil reacted with Cu-15Ni-8Sn alloy to generate the corresponding sulfides,which hindered the repair of micro-cracks,promoted cracks growth,and led to delamination.This work has established guidelines for the application of the Cu-15Ni-8Sn alloy under oil-lubricated conditions through developing wear map.展开更多
Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly...Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism.展开更多
Due to the biological risks of using the conventional lubricants,the vegetable oils have been considered nowadays.Besides,to improve the tribological properties of the vegetable oils in various applications like metal...Due to the biological risks of using the conventional lubricants,the vegetable oils have been considered nowadays.Besides,to improve the tribological properties of the vegetable oils in various applications like metal forming processes,nanoparticles have been used as additives.This research evaluated the lubrication performance of the Al2O3 and TiO2 nanoparticles dispersed in rapeseed oil during the parallel tubular channel angular pressing (PTCAP) process.The experimental PTCAP tests have been fulfilled under three lubrication conditions and the comparison between the PTCAP processed tubes has been performed in terms of the maximum forming force,surface roughness,and microhardness.The experimental results indicate that adding the mentioned nanoparticles has caused at least a 50% reduction in the maximum deformation load.Moreover,a remarkable decrement in the surface roughness of the formed tubes has been obtained.展开更多
文摘The Flory-Huggins interaction parameter(χ1,2∞) and solubility parameter(δ2) and its hydrogen bonding sensing component(δh) were determined using inverse gas chromatography(IGC).These parameters were successfully used in the probes of chemical changes that occur during the oxidation of naphthenic and paraffinic base oils in a GC column.Changes in χ1,2∞ values reflect the different types of intermolecular interactions(dispersive,polar,hydrogen bonding) of the given lubricating base oil during oxidation.The obtained results showed that δh component of solubility parameter is the most important parameter for probing the oxidative-chemical changes during the oxidation of given lubricating oils.
文摘Inverse gas chromatographic technique(IGC) was attempted as a new approach to follow the chem-ical changes that occur during lubricating base oil oxidation.Three groups of the oxidized base oils were pre-pared at different oxygen flow rates,periods and temperatures according to IP48method.The corrected reten-tion volumes(VR) were calculated for a series of selected test solutes possessing different functional groups onthe oxidized base oils used as stationary phases.Kovats retention index(I),Flory-Huggins interaction parame-ter(κ1∞,2),and partial molar free energy of solution(ΔGL∞),were calculated for the given test solutes fromtheirVR.The relationships between theIvalues and the oxidation variables were plotted and discussed.Theobtained results were confirmed by potentiometric titration.The study reveals that the magnitudes of variationofI,κ1∞,2orΔG∞Lretention parameters depend on the oxidation degree of the base oil.Large differences be-tween theIvalues permit discrimination between the different oxidation steps.Key words: inverse gas chromatography(IGC);oxidation;lubricating base oil;Kovats retention
文摘Nano-copper used as lubrication oil additive has good tribological property and active self-repairing effect for friction pairs. The reduction in liquid phase for preparing nano-additive is one of the most common method. Nano-copper was prepared by reduction in liquid phase. The different project and routine practice for preparing nano-copper were researched. The dispersion problem of nano-copper was investigated by surface treatment and high dispersion. The particles dimension, the dispersion stability and the purity of nano-copper were characterized by TEM and XRD. The conclusion indicates that the methods of the preparation and dispersion can obtain 20nm copper additive with good dispersion property in lubrication oil.
基金Projects(2017YFB0306105,2018YFE0306100)supported by the National Key Research and Development Program of China
文摘Wear behaviors of a peak-aged Cu-15Ni-8Sn alloy fabricated by powder metallurgy were investigated.The results indicated that the friction coefficients and the wear rates of Cu-15Ni-8Sn alloy within a normal load range of 50−700 N and a sliding speed range of 0.05−2.58 m/s were less than 0.14 and 2.8×10−6 mm3/mm,respectively.Stribeck-like curve and wear map were developed to describe the oil-lubrication mechanism and wear behavior.The equation of the dividing line between zones of safe and unsafe wear life was determined.Lubricating oil was squeezed into micro-cracks under severe wear conditions.In addition,the lubricating oil reacted with Cu-15Ni-8Sn alloy to generate the corresponding sulfides,which hindered the repair of micro-cracks,promoted cracks growth,and led to delamination.This work has established guidelines for the application of the Cu-15Ni-8Sn alloy under oil-lubricated conditions through developing wear map.
基金Project(2016YFB0301402)supported by the National Key Research and Development Program of ChinaProject(CSU20151024)supported by the Innovation-driven Plan in Central South University,China
文摘Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism.
文摘Due to the biological risks of using the conventional lubricants,the vegetable oils have been considered nowadays.Besides,to improve the tribological properties of the vegetable oils in various applications like metal forming processes,nanoparticles have been used as additives.This research evaluated the lubrication performance of the Al2O3 and TiO2 nanoparticles dispersed in rapeseed oil during the parallel tubular channel angular pressing (PTCAP) process.The experimental PTCAP tests have been fulfilled under three lubrication conditions and the comparison between the PTCAP processed tubes has been performed in terms of the maximum forming force,surface roughness,and microhardness.The experimental results indicate that adding the mentioned nanoparticles has caused at least a 50% reduction in the maximum deformation load.Moreover,a remarkable decrement in the surface roughness of the formed tubes has been obtained.