期刊文献+
共找到6,005篇文章
< 1 2 250 >
每页显示 20 50 100
Variation of Membrane Electrode Assembly Catalyst Layer in Unitized Regenerative Fuel Cell
1
作者 Yollanda Nurcholifah Dedi Rohendi +4 位作者 Edy Herianto Majlan Nirwan Syarif Addy Rachmat Dwi Hawa Yulianti Nyimas Febrika S 《电化学(中英文)》 北大核心 2025年第4期32-43,共12页
A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefo... A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2. 展开更多
关键词 Unitized regenerative fuel cell Round trip efficiency Pt-Ru/C Membrane electrode assembly Electrochemical surface area
在线阅读 下载PDF
Series Reports from Professor Wei's Group of Chongqing University:Advancements in Electrochemical Energy Conversions(1/4):Report 1:High-performance Oxygen Reduction Catalysts for Fuel Cells 被引量:1
2
作者 Fa-Dong Chen Zhuo-Yang Xie +5 位作者 Meng-Ting Li Si-Guo Chen Wei Ding Li Li Jing Li Zi-Dong Wei 《电化学(中英文)》 CAS 北大核心 2024年第7期1-27,共27页
Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without lo... Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without losses of activity and durability,and their research advances in this area over the past three decades are briefly reviewed herein.Regarding the Pt-based catalysts and the low Pt usage,they have firstly tried to clarify the degradation mechanism of Pt/C catalysts,and then demonstrated that the activity and stability could be improved by three strategies:regulating the nanostructures of the active sites,enhancing the effects of support materials,and optimizing structures of the three-phase boundary.For Pt-free catalysts,especialiy carbon-based ones,several strategies that they proposed to enhance the activity of nitrogen-/heteroatom-doped carbon catalysts are firstly presented.Then,an indepth understanding of the degradation mechanism for carbon-based catalysts is discussed,and followed by the corresponding stability enhancement strategies.Also,the carbon-based electrode at the micrometer-scale,faces the challenges such as low active-site density,thick catalytic layer,and the effect of hydrogen peroxide,which require rational structure design for the integral cathodic electrode.This review finally gives a brief conclusion and outlook about the low cost and long lifespan of cathodic oxygen reduction catalysts. 展开更多
关键词 fuel cell Oxygen reduction reaction Pt-based catalyst Carbon-based catalyst
在线阅读 下载PDF
Future development of solid oxide fuel cell 被引量:1
3
作者 李箭 杨新民 蒲健 《电池》 CAS CSCD 北大核心 2006年第5期396-397,共2页
Solid oxide fuel cell(SOFC) technology and its status and problems were briefly described.Several topics for furtherresearch and development were proposed.
关键词 solid oxide fuel cell future development RESEARCH
在线阅读 下载PDF
Small proton exchange membrane fuel cell power station by using bio-hydrogen
4
作者 刘志祥 毛宗强 +1 位作者 王诚 任南琪 《电池》 CAS CSCD 北大核心 2006年第5期362-363,共2页
关键词 proton exchange membrane fuel cell BIO-HYDROGEN
在线阅读 下载PDF
Hydrogen generation from methanol reforming for fuel cell applications: A review 被引量:25
5
作者 SUN Zhao SUN Zhi-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1074-1103,共30页
Methanol is regarded as an important liquid fuel for hydrogen storage, transportation, and in-situ generation due to its convenient conveyance, high energy density, and low conversion temperature. In this work, an ove... Methanol is regarded as an important liquid fuel for hydrogen storage, transportation, and in-situ generation due to its convenient conveyance, high energy density, and low conversion temperature. In this work, an overview of state-of-the-art investigations on methanol reforming is critically summarized, including the detailed introduction of methanol conversion pathways from the perspective of fuel cell applications, various advanced materials design for catalytic methanol conversion, as well as the development of steam methanol reformers. For the section of utilization pathways, reactions such as steam reforming of methanol, partial oxidation of methanol, oxidative steam reforming of methanol, and sorption-enhanced steam methanol reforming were elaborated;For the catalyst section, the strategies to enhance the catalytic activity and other comprehensive performances were summarized;For the reactor section, the newly designed steam methanol reformers were thoroughly described. This review will benefit researchers from both fundamental research and fuel cell applications in the field of catalyzing methanol to hydrogen. 展开更多
关键词 methanol reforming hydrogen generation fuel cell CATALYST REFORMER
在线阅读 下载PDF
A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation 被引量:9
6
作者 蒋海明 罗生军 +2 位作者 师晓爽 戴萌 郭荣波 《Journal of Central South University》 SCIE EI CAS 2013年第2期488-494,共7页
A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was ... A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was evaluated. Wastewater was fed to the upflow ML-MFC to remove chemical oxygen demand (COD), phosphorus and nitrogen with simultaneous electricity generation. The effluent from the cathode compartment of the upflow ML-MFC was then continuously fed to an external photobioreactor for removing the remaining phosphorus and nitrogen using microalgae. Alone, the upflow ML-MFC produces a maximum power density of 481 mW/m 3 , and obtains 77.9% COD, 23.5% total phosphorus (TP) and 97.6% NH4+-N removals. When combined with the photobioreactor, the system achieves 99.3% TP and 99.0% NH4+-N total removal. These results show both the effectiveness and the potential application of the coupled system to continuously treat domestic wastewater and simultaneously generate electricity and biomass. 展开更多
关键词 wastewater treatment microbial fuel cell PHOTOBIOREACTOR MICROALGAE BIOELECTRICITY
在线阅读 下载PDF
A model and simulation of cathode flooding and drying on unsteady proton exchange membrane fuel cell 被引量:2
7
作者 A.Bakhtiar KIM Young-Bok +2 位作者 YOU Jin-Kwang YOON Jung-In CHOI Kwang-Hwan 《Journal of Central South University》 SCIE EI CAS 2012年第9期2572-2577,共6页
A water balance has a significant impact on the overall system performance in proton exchange membrane fuel cell.An actual fuel cell application has a dynamic electrical load which means also dynamic electrical curren... A water balance has a significant impact on the overall system performance in proton exchange membrane fuel cell.An actual fuel cell application has a dynamic electrical load which means also dynamic electrical current.Therefore,since this electrical current is known,the water production from the fuel cell reaction is also able to be predicted.As long as the fuel cell water transportation model is provided,the present liquid water inside the porous medium is also able to be modeled.A model of the liquid water saturation level in a fuel cell in unsteady load condition was proposed.This model is a series of the water transportation model of water saturation level for the final output of proton exchange membrane(PEM) fuel cell to predict the flooding or drying of PEM fuel cell.The simulation of vehicle fuel cell in different dynamic load profiles and different inlet air conditions was done using this model.The simulation result shows that PEM fuel cell with different dynamic load profiles has different liquid water saturation level profiles.This means that a dynamic load fuel cell requires also a dynamic input air humidification. 展开更多
关键词 model simulation FLOODING unsteady condition fuel cell
在线阅读 下载PDF
Experimental Study on Characteristics of Cathode Fan Systems of Proton Exchange Membrane Fuel Cells 被引量:9
8
作者 ZHU Xingguang JIA Qiuhong +2 位作者 CHEN Tanglong HAN Ming DENG Bin 《中国电机工程学报》 EI CSCD 北大核心 2013年第11期I0007-I0007,9,共1页
对自制的阴极开放式自增湿型质子交换膜燃料电池阴极风扇系统不同工作模式下电池的空气流量分布及温度分布开展了实验研究。采用testo435多功能测量仪测量不同工作模式下电池阴极的空气流速;采用FLUKETi25红外温度成像仪测量不同操作... 对自制的阴极开放式自增湿型质子交换膜燃料电池阴极风扇系统不同工作模式下电池的空气流量分布及温度分布开展了实验研究。采用testo435多功能测量仪测量不同工作模式下电池阴极的空气流速;采用FLUKETi25红外温度成像仪测量不同操作模式下电池的表面温度分布。实验结果表明:阴极风扇系统不同的工作模式(“吸”和“吹”)会造成空气流量分布及温度分布不同。风扇工作在“吸.”模式下,燃料电池的表面工作温度分布和空气流量分布更均匀,性能更好;电池表面工作温度分布与流过电池阴极的空气流量具有一致性。该研究对于阴极开放式燃料电池性能研究及寻求电池系统效率、性能、温湿度等整体最优具有一定的指导和参考价值。 展开更多
关键词 质子交换膜燃料电池 风扇系统 燃料电池发电系统 实验 特性 阴极 能量转换装置 电力生产系统
在线阅读 下载PDF
Identification and analysis based on genetic algorithm for proton exchange membrane fuel cell stack 被引量:3
9
作者 李曦 曹广益 +1 位作者 朱新坚 卫东 《Journal of Central South University of Technology》 EI 2006年第4期428-431,共4页
The temperature of proton exchange membrane fuel cell stack and the stoichiometric oxygen in cathode have relationship with the performance and life span of fuel cells closely. The thermal coefficients were taken as i... The temperature of proton exchange membrane fuel cell stack and the stoichiometric oxygen in cathode have relationship with the performance and life span of fuel cells closely. The thermal coefficients were taken as important factors affecting the temperature distribution of fuel cells and components. According to the experimental analysis, when the stoichiometric oxygen in cathode is greater than or equal to 1.8, the stack voltage loss is the least. A novel genetic algorithm was developed to identify and optimize the variables in dynamic thermal model of proton exchange membrane fuel cell stack, making the outputs of temperature model approximate to the actual temperature, and ensuring that the maximal error is less than 1 ℃. At the same time, the optimum region of stoichiometric oxygen is obtained, which is in the range of 1.8-2.2 and accords with the experimental analysis results. The simulation and experimental results show the effectiveness of the proposed algorithm. 展开更多
关键词 proton exchange membrane fuel cell genetic algorithm TEMPERATURE thermal coefficient stoichiometric oxygen
在线阅读 下载PDF
Past, present and future of fuel cells 被引量:3
10
作者 A.C.C.Tseung(School of Chemical and Life Sciences,University of Greenwich,London SE18 6PB,UK) 《电池》 CAS CSCD 北大核心 2002年第3期130-132,共3页
Though the fuel cell was invented by Grove in 1839,there are no commercially viable products at present.The development of fuel cells can be conveniently divided into three phases exploratory phase(1839-1967).The main... Though the fuel cell was invented by Grove in 1839,there are no commercially viable products at present.The development of fuel cells can be conveniently divided into three phases exploratory phase(1839-1967).The main emphasis of the work is to increase the area of the three phase interface at the electrode.The problem was solved by Bacon who invented the dual porosity,biporous nickel electrode.He demonstrated the first H 2/O 2 fuel cell(180℃,20atm).This cell was later improved and scaled up to power the Apollo lunar mission.However,the cost is too high for civilian applications and we come to the development phase (1967-2001).The main emphasis has been on the use of Teflon bonded electrodes and novel catalysts(PtRu,Pt/WO 3 and Pt Ru/WO 3 anode catalyst for the anodic oxidation of impure H 2 and methanol.In addition,the recent discovery of gadolinium doped ceria has reduced the operating temperature of solid oxide electrolytes to ~500℃ instead of 1?000℃.From 2001 onwards,we may be entering the breakthrough phase where the most favourable candidates are direct methanol vapor fuel cells and solid oxide electrolyte fuel cells.In the former case,there is a need to reduce the cross over of methanol to the cathode compartment and the development of air cathode catalyst which are less affected by methanol and in the latter case,there is a need to improve the activity of the anode and cathode catalysts. 展开更多
关键词 燃料电池 电催化反应 电解液 电极
在线阅读 下载PDF
Data-driven nonlinear control of a solid oxide fuel cell system 被引量:2
11
作者 李益国 沈炯 +2 位作者 K.Y.Lee 刘西陲 费文哲 《Journal of Central South University》 SCIE EI CAS 2012年第7期1892-1901,共10页
Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operat... Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operating constraints. A novel data-driven nonlinear control strategy was proposed to solve the SOFC control problem by combining a virtual reference feedback tuning (VRFT) method and support vector machine. In order to fulfill the requirement for fuel utilization and control constraints,a dynamic constraints unit and an anti-windup scheme were adopted. In addition,a feedforward loop was designed to deal with the current disturbance. Detailed simulations demonstrate that the fast response of fuel flow for the current demand disturbance and zero steady error of the output voltage are both achieved. Meanwhile,fuel utilization is kept almost within the safe region. 展开更多
关键词 solid oxide fuel cell (SOFC) data-driven method virtual reference feedback tuning (VRFT) support vector machine(SVM) ANTI-WINDUP
在线阅读 下载PDF
Electrodeposited Pt and Pt-Sn nanoparticles on Ti as anodes for direct methanol fuel cells 被引量:3
12
作者 Hanaa B HASSAN 《燃料化学学报》 EI CAS CSCD 北大核心 2009年第3期346-354,共9页
Electro-oxidation of methanol was studied on titanium supported nanocrystallite Pt and Ptx-Sny catalysts prepared by electrodeposition techniques. Their electro-catalytic activities were studied in 0.5 mol/L H2SO4 and... Electro-oxidation of methanol was studied on titanium supported nanocrystallite Pt and Ptx-Sny catalysts prepared by electrodeposition techniques. Their electro-catalytic activities were studied in 0.5 mol/L H2SO4 and compared to those of a smooth Pt, Pt/Pt and Pt-Sn/Pt electrodes. Platinum was deposited on Ti by galvanostatic and potentiostatic techniques. X-ray diffractometer (XRD) and energy dispersive X-ray (EDX) techniques were applied in order to investigate the chemical composition and the phase structure of the modified electrodes. Scanning electron microscopy (SEM) was used to characterize the surface morphology and to correlate the results obtained from the two electrochemical deposition methods. Results show that modified Pt/Ti electrodes prepared by the two methods have comparable performance and enhanced catalytic activity towards methanol electro-oxidation compared to Pt/Pt and smooth Pt electrodes. Steady state Tafel plots experiments show a higher rate of methanol oxidation on a Pt/Ti catalyst than that on a smooth Pt. Introduction of a small amount of Sn deposited with Pt improves the catalytic activity and the stability of prepared electrode with time as indicated from the cyclic votlammetry and the chronoamperometric experiments. The effect of variations in the composition for binary catalysts of the type Ptx-Sny/Ti towards the methanol oxidation reaction is reported. Consequently, the Ptx-Sny/Ti (x∶y (8∶1), molar ratio) catalyst is a very promising one for methanol oxidation. 展开更多
关键词 电化学 甲醇 电沉积 PT
在线阅读 下载PDF
Pt-Ru Catalysts Prepared by a Modified Polyol Process for Direct Methanol Fuel Cells 被引量:1
13
作者 ZHANG Junmin ZHU Fangfang +2 位作者 ZHANG Kunhua LIU Weiping GUAN Weiming 《贵金属》 CAS CSCD 北大核心 2012年第A01期222-226,共5页
Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were ... Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were carried out to characterize the morphology, composition and the electrochemical properties of the PtRu/C catalyst. The results revealed that the PtRu nanoparticles with small average particle size (≈2.5 nm), and highly dispersed on the carbon support. The PtRu/C catalyst exhibited high catalytic activity and anti poisoned performance than that of the JM PtRu/C. It is imply that the modified polyol method is efficient for PtRu/C catalyst preparation. 展开更多
关键词 PtRu/C catalysts modified polyol method direct methanol fuel cells(DMFCs) electrochemical performance
在线阅读 下载PDF
High temperature polymer electrolyte membrane fuel cell 被引量:1
14
作者 K.Scott M.Mamlouk 《电池》 CAS CSCD 北大核心 2006年第5期347-353,共7页
One of the majorissuesli mitingtheintroduction of polymer electrolyte membranefuel cells(PEMFCs) is thelowtemperature ofoperation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount... One of the majorissuesli mitingtheintroduction of polymer electrolyte membranefuel cells(PEMFCs) is thelowtemperature ofoperation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO,inevitably present in reformedfuel.In order to alleviate the problemof COpoisoning andi mprove the power density of the cell,operating at temperature above 100 ℃ispreferred.Nafion-type perfluorosulfonated polymers have been typically used for PEMFC.However,the conductivity of Nafion-typepolymers is not high enoughto be usedfor fuel cell operations at higher temperature(>90 ℃) and atmospheric pressure because they dehy-drate under these condition.An additional problem which faces the introduction of PEMFCtechnology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications.Consequently the use of alternative fuels such as methanol and ethanol is of interest,especially if thiscan be used directlyinthe fuel cell,without reformationto hydrogen.Ali mitation of the direct use of alcohol is thelower activity of oxida-tionin comparison to hydrogen,which means that power densities are considerably lower.Hence to i mprove activity and power outputhigher temperatures of operation are preferable.To achieve this goal,requires a newpolymer electrolyte membrane which exhibits stabilityand high conductivityin the absence of liquid water.Experi mental data on a polybenzi midazole based PEMFC were presented.Asi mple steady-stateisothermal model of the fuel cell is alsoused to aidin fuel cell performance opti misation.The governing equations involve the coupling of kinetic,ohmic and mass transport.Thispaper also considers the advances madeinthe performance of direct methanol and solid polymer electrolyte fuel cells and considers theirli mi-tations in relation to the source and type of fuels to be used. 展开更多
关键词 polybenzi midazole(PBI) high-temperature polymer electrolyte fuel cell METHANOL ETHANOL
在线阅读 下载PDF
Stress relaxation behavior and life prediction of gasket materials used in proton exchange membrane fuel cells 被引量:1
15
作者 LI Guo GONG Jian-ming +2 位作者 TAN Jin-zhu ZHU Da-sheng JIA Wen-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期623-631,共9页
Silicone rubber gaskets are employed to keep fuel gases and oxidation in their own zones. Due to the viscosity and elasticity, the assembly force could relax when the silicone rubber is compressed in a proton exchange... Silicone rubber gaskets are employed to keep fuel gases and oxidation in their own zones. Due to the viscosity and elasticity, the assembly force could relax when the silicone rubber is compressed in a proton exchange membrane fuel cell. In this work, the stress relaxation behavior of silicone rubber samples is studied under different temperatures and simulated operating conditions. The results show that the stress relaxes exponentially with time at 25% strain level, especially at higher temperature or with higher acid concentration solution. The three-term Prony series can simulate the viscoelastic behavior well, and the Master curves are established by applying a time–temperature superposition method to estimate the life of the samples. It can save approximately 50% and 78% of the test time when an operating temperature and acid solution are chosen appropriately. 展开更多
关键词 stress relaxation GASKET silicone rubber life prediction fuel cell
在线阅读 下载PDF
Development of fuzzy control of a fuel cell generation system using FPGA
16
作者 杨帆 朱新坚 李浩 《电池》 CAS CSCD 北大核心 2006年第5期405-407,共3页
Afuzzy controller based oni mproved Generalized-Membership-Function(GMF) algorithmfor afuel cell generationsys-tem wasintroduced.Under the demands on control in application of the converter,a Field Programmable Gate A... Afuzzy controller based oni mproved Generalized-Membership-Function(GMF) algorithmfor afuel cell generationsys-tem wasintroduced.Under the demands on control in application of the converter,a Field Programmable Gate Array(FPGA) re-alization method to manage the power flow was given.This control systembased onthe proposed modified GMF was proved to bea universal approxi mation systemin theory.The fuzzy control technique was combined with Eletronic Design Automatic(EDA)technique and a paralleling fuzzy controller was i mplemented in FPGA.Paralleling fuzzy controller based oni mproved GMF algo-rithm wasi mplemented on a Cyclone FPGA.The result of si mulation based on QuartusII confirmed the validity of the proposed method. 展开更多
关键词 fuel cell fuzzy control Field Programmable Gate Array(FPGA)
在线阅读 下载PDF
Comparative studies of anode gas diffusion layers for direct methanol fuel cells 被引量:1
17
作者 GAO Yan WANG Su-li +1 位作者 HOU Hong-ying ZHAO Liang 《大连理工大学学报》 EI CAS CSCD 北大核心 2014年第3期291-297,共7页
Comparative studies of four common-used anode gas diffusion layers(A-GDLs),namely carbon cloth,carbon paper,carbon paper based on XC-72(in short XC-72)and GDL made of carbon nanotubes(CNT)for direct methanol fuel cell... Comparative studies of four common-used anode gas diffusion layers(A-GDLs),namely carbon cloth,carbon paper,carbon paper based on XC-72(in short XC-72)and GDL made of carbon nanotubes(CNT)for direct methanol fuel cells(DMFCs)were carried out and discussed.The results of scanning electron microscope(SEM),mercury intrusion porosimeter(MIP)and electrochemical test show that CNT has large pore size distribution in pore size of 1000-3000nm and the largest total porosity compared with those of the other three.Carbon paper and XC-72show disadvantageous influences on cell performances at high current density,because carbon paper has many large pores which are unsuited for water transport,while XC-72has many small pores which are unsuited for gas transport.Though cell with carbon cloth has the highest methanol diffusion coefficient,it shows a little lower performance than that with CNT due to its thickness.Anode polarization(AP)results also display that the cell with CNT has the least methanol mass transfer resistance.As a result,the cell with CNT shows the best performance with the highest limiting current density and peak power density of 460 mA·cm^(-2)and 110mW·cm^(-2),respectively. 展开更多
关键词 direct methanol fuel cells(DMFCs) gas diffusion layer(GDL) POROSITY mass transfer methanol diffusion coefficient
在线阅读 下载PDF
Power production enhancement with polyaniline composite anode in benthic microbial fuel cells 被引量:1
18
作者 JIA Yu-hong QI Zhen-lian YOU Hong 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第3期499-505,共7页
In this study,conductive polymer polyaniline(PANI)is employed to modify the anodes of benthic microbial fuel cells(BMFC).Four electrochemical methods are used to synthesize the polyaniline anodes;the results show that... In this study,conductive polymer polyaniline(PANI)is employed to modify the anodes of benthic microbial fuel cells(BMFC).Four electrochemical methods are used to synthesize the polyaniline anodes;the results show that the PANI modification,especially the pulse potential method for PANI synthesis could obviously improve the cell energy output and reduce the anode internal resistance.The anode is modified by PANI doped with Fe or Mn to further improve the BMFC performance.A maximum power density of 17.51 mW/m2 is obtained by PANI-Fe anode BMFC,which is 8.1 times higher than that of control.The PANI-Mn anode BMFC also gives a favorable maximum power density(16.78 mW/m2).Fe or Mn modification has better effect in improving the conductivity of polyaniline,thus improving the energy output of BMFCs.This work applying PANI composite anode into BMFC brings new development prospect and could promote the practical application of BMFC. 展开更多
关键词 benthic microbial fuel cell anode modification POLYANILINE high power output
在线阅读 下载PDF
Development and optimisation of electrode materials in solid oxide fuel cells 被引量:2
19
作者 JIANG San ping(Fuel Cell Strategic Research Programme, School of Mechanical and Production Engineering,Nanyang Technological University, Nanyang Avenue, Singapore 639798) 《电池》 CAS CSCD 北大核心 2002年第3期133-137,共5页
Solid oxide fuel cell (SOFC) is an all solid electrochemical device to convert fuels such as hydrogen and natural gas to electricity with high efficiency and very low greenhouse gas emission compared to traditional th... Solid oxide fuel cell (SOFC) is an all solid electrochemical device to convert fuels such as hydrogen and natural gas to electricity with high efficiency and very low greenhouse gas emission compared to traditional thermal power generation plants. Moreover, the reliability and efficiency of SOFC is critically dependent on the performance and stability of its components including anode, cathode and electrolyte. This in turn is largely dependent on the material selection and the fabrication processes. In this paper, specific examples are given to demonstrate strategy and process in the development and optimisation of electrode materials such as Ni/Y 2O 3 ZrO 2 cermet anodes and (LaSr)MnO 3 based cathodes. The results also demonstrate the importance of fabrication processes and that the understanding of the electrode process plays a very important role in the optimisation process of electrode materials. 展开更多
关键词 固体氧化物燃料电池 电极材料 电极优化
在线阅读 下载PDF
Effect of bamboo charcoal filler on the performance of microbial fuel cell 被引量:2
20
作者 XIE Beizhen SU Qiang YANG Shaoqiang LIU Hong 《环境污染与防治》 CAS CSCD 北大核心 2014年第2期I0004-I0009,10,共6页
微生物燃料电池(MFC)的阳极对提高MFC产电性能有至关重要的影响.利用竹炭比表面积大、吸附能力强等特性,将其作为“三合一”膜电极MFC的阳极填充材料,通过增大阳极比表面积来提高其产电能力.实验结果表明,加入竹炭至阳极室后,MFC最高... 微生物燃料电池(MFC)的阳极对提高MFC产电性能有至关重要的影响.利用竹炭比表面积大、吸附能力强等特性,将其作为“三合一”膜电极MFC的阳极填充材料,通过增大阳极比表面积来提高其产电能力.实验结果表明,加入竹炭至阳极室后,MFC最高输出电压(外接电阻1 000Ω时)由0.280V增大到0.387V,提高了38.2%,并且输出电压更加稳定;而最大功率密度也由原来的0.22 W/m3增大到1.42 W/m3,同时内阻降低了80.85%(由235 Ω降为45 Ω);库仑效率由15.0%增大到25.6%.说明MF℃阳极室填充竹炭可以显著促进MFC的产电性能. 展开更多
关键词 摘要 编辑部 编辑工作 读者
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部