准确构建螺栓连接处的非线性滞回曲线模型对卫星承重结构的减振和安全性能评估至关重要。传统计算模型的时域分析方法需要大量时间成本,典型的数据驱动模型难以构建高精度的滞回模型。针对上述挑战,提出了一种新的残差改进的深度学习算...准确构建螺栓连接处的非线性滞回曲线模型对卫星承重结构的减振和安全性能评估至关重要。传统计算模型的时域分析方法需要大量时间成本,典型的数据驱动模型难以构建高精度的滞回模型。针对上述挑战,提出了一种新的残差改进的深度学习算法RIDLA(Residual Improvement Deep Learning Algorithm),用于构建螺栓连接处位移与力的滞回曲线模型。该算法充分利用长短期记忆(LSTM)神经网络拟合时间序列非线性关系的能力,通过实测响应与计算残差之间的交互迭代,构建了多级别的残差改进深度学习模型,从而实现了对螺栓连接处滞回模型的准确建模。使用某卫星承重结构的子部件循环加载实验数据验证了RIDLA方法的性能。结果表明RIDLA实现了对螺栓连接处的位移和力滞回曲线高度精确的预测。此外,RIDLA方法有可能应用于预测其他复杂非线性系统的动态响应。展开更多
文摘准确构建螺栓连接处的非线性滞回曲线模型对卫星承重结构的减振和安全性能评估至关重要。传统计算模型的时域分析方法需要大量时间成本,典型的数据驱动模型难以构建高精度的滞回模型。针对上述挑战,提出了一种新的残差改进的深度学习算法RIDLA(Residual Improvement Deep Learning Algorithm),用于构建螺栓连接处位移与力的滞回曲线模型。该算法充分利用长短期记忆(LSTM)神经网络拟合时间序列非线性关系的能力,通过实测响应与计算残差之间的交互迭代,构建了多级别的残差改进深度学习模型,从而实现了对螺栓连接处滞回模型的准确建模。使用某卫星承重结构的子部件循环加载实验数据验证了RIDLA方法的性能。结果表明RIDLA实现了对螺栓连接处的位移和力滞回曲线高度精确的预测。此外,RIDLA方法有可能应用于预测其他复杂非线性系统的动态响应。