To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the bille...To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm.展开更多
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr...In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.展开更多
A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spin...A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spinning,and finally quenching in ice water after holding for 1 h at 498°C followed by the 2nd pass spinning.ABAQUS finite element software is used to simulate the internal spinning process of the products formed under different forming parameters.The distribution laws of spinning force,the stress and strain under different forming processes were compared and analyzed.The mechanical properties and microstructure of the products are subsequently analyzed.The results show that the strain and the residual stress in the skin area of the formed products under two-pass spinning process more uniform,and the hardness and the mechanical performance are improved.The microstructure of the products formed with the 0.15 mm thickness reduction at the 2nd pass is excellent.And the second phase grain size distributed uniformly in the range of 36μm.Whereas,the second phase particles are broken seriously and the size distribution inhomogeneity is increased when the thickness reduction in the skin area is greater than 0.20 mm at the 2nd pass spinning process.展开更多
Studies on ballistic penetration to laminates is complicated,but important for design effective protection of structures.Experimental means of study is expensive and can often be dangerous.Numerical simulation has bee...Studies on ballistic penetration to laminates is complicated,but important for design effective protection of structures.Experimental means of study is expensive and can often be dangerous.Numerical simulation has been an excellent supplement,but the computation is time-consuming.Main aim of this thesis was to develop and test an effective tool for real-time prediction of projectile penetrations to laminates by training a neural network and a decision tree regression model.A large number of finite element models were developed;the residual velocities of projectiles from finite element simulations were used as the target data and processed to produce sufficient number of training samples.Study focused on steel 4340tpolyurea laminates with various configurations.Four different 3D shapes of the projectiles were modeled and used in the training.The trained neural network and decision tree model was tested using independently generated test samples using finite element models.The predicted projectile velocity values using the trained machine learning models are then compared with the finite element simulation to verify the effectiveness of the models.Additionally,both models were trained using a published experimental data of projectile impacts to predict residual velocity of projectiles for the unseen samples.Performance of both the models was evaluated and compared.Models trained with Finite element simulation data samples were found capable to give more accurate predication,compared to the models trained with experimental data,because finite element modeling can generate much larger training set,and thus finite element solvers can serve as an excellent teacher.This study also showed that neural network model performs better with small experimental dataset compared to decision tree regression model.展开更多
Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key formin...Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key forming conditions of cold HR of bearing steel-balls were detailedly described. Then, by taking steel-ball rolling elements of the B7008 C angular contact ball bearing as an example, a completed 3D elastic-plastic FE model of cold HR forming process was established under SIMUFACT software environment. Furthermore, the deformation characteristics in HR process were discovered, including the forming process, evolution and distribution laws of strain, stress and damage based on Lemaitre relative damage model. The results reveal that the central loosening and cavity defects in HR process may have a combined effect of large negative hydrostatic pressure(positive mean stress)caused by multi-dimensional tensile stresses, high level transverse tensile stress, and circular-alternating shear stress in cross section.展开更多
A shield machine with freezing function is proposed in order to realize tool change operation at atmospheric pressure. Furthermore, the transformation project of freezing cutterhead and tool change maintenance method ...A shield machine with freezing function is proposed in order to realize tool change operation at atmospheric pressure. Furthermore, the transformation project of freezing cutterhead and tool change maintenance method are put forward. Taking the shield construction of Huanxi Power Tunnel as an example, a numerical analysis of the freezing cutter head of the project was carried out. The results show that when the brine temperature is-25 °C, after 30 d of freezing, the thickness of the frozen wall can reach 0.67 m and the average temperature drops to-9.9 °C. When the brine temperature is-30 °C, after 50 d of freezing, the thickness of the frozen wall can reach 1.01 m and the average temperature drops to-12.4 °C. If the thickness of the frozen wall is 0.5 m and the average temperature is-10 °C, as the design index of the frozen wall, the brine temperature should be lower than-28 °C to meet the excavation requirements in 30 d. Analyzing the frozen wall stress under 0.5 m thickness and-10 °C average temperature condition, the tensile safety factor and compressive safety factor are both greater than 2 at the most dangerous position, which can meet the tool change requirements for shield construction.展开更多
The new numerical approach for analysis of the warhead transportations is suggested.This approach allows to control the warhead operability before its experimental analysis.The approach is implemented by the adequate ...The new numerical approach for analysis of the warhead transportations is suggested.This approach allows to control the warhead operability before its experimental analysis.The approach is implemented by the adequate models for the software ANSYS.Analysis of the loads at land operations and transportations of the warhead by natural roads,water and aviation allows to obtain the maximal values of loads,which are used in numerical simulations of the warhead.These loads give an opportunity to analyze the operability and the fatigue strength of the cartridge warhead.The numerical simulations of the attachments of the warhead combat elements are performed on the basis of the suggested method.The data of the numerical simulations verifies the operability of the fastener system of the warhead combat elements.展开更多
A finite element analysis method was used to simulate the stamping process of the blade of a large concrete-mixer truck. The updated Lagrange method and the elasto-plastic constitutive equation were adopted to solve t...A finite element analysis method was used to simulate the stamping process of the blade of a large concrete-mixer truck. The updated Lagrange method and the elasto-plastic constitutive equation were adopted to solve the large strain and displacement deformation of the blade. A modified Coulomb friction model was used to solve the sliding contact between the blade and the dies. The von Mises stress distribution in the blade, the spatial displacement variation and the spring-back of the typical node were investigated in the simulation. The von Mises stress in the blade where the spring-back occurs is lowered from 463.0MPa to 150.0MPa before and after the spring-back. A typical node in the blade has a 3.33mm spring-back in Z direction. The results of the (experiments) agree well with the simulation. The analysis results are valuable for designing optimal tool dies.展开更多
As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate unde...As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response.展开更多
Understanding the dynamic response of composite material cartridges during the firing process is of great significance for improving their reliability and safety.A theoretical model describing the dynamic response of ...Understanding the dynamic response of composite material cartridges during the firing process is of great significance for improving their reliability and safety.A theoretical model describing the dynamic response of composite material cartridges is established based on the thick-walled cylinder theory and rate-dependent constitutive model of composite materials.The correctness of the theoretical model is validated through finite element simulations of cartridge deformation.The influence of chamber pressure and cartridge wall thickness on the cartridge's deformation process and stress distribution is analyzed.The results indicate that the primary deformation of composite material cartridges inside the chamber is elastic deformation.Compared to metal cartridges,composite material cartridges require higher pressure for touching-chamber and are more prone to developing gaps after unloading to ensure smooth extraction.During the deformation process,the touching-chamber behavior of the cartridge can improve the stress distribution.Under the same chamber pressure,the touching-chamber behavior can reduce the circumferential stress by approximately 30%.The inner wall surface of the cartridge is a critical area that requires attention.The touching-chamber behavior can be facilitated by appropriately reducing the cartridge wall thickness while ensuring overall strength.This study can provide guidance for the optimization design of composite material cartridges.展开更多
For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-p...For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.展开更多
The experimental die apparatus of the solid granules medium forming on sheet metal was designed and manufactured.Typical parts,such as conical,parabolic,cylindrical and square-box-shaped components,were successfully t...The experimental die apparatus of the solid granules medium forming on sheet metal was designed and manufactured.Typical parts,such as conical,parabolic,cylindrical and square-box-shaped components,were successfully trial-produced as well.According to the analysis of the changing trends of the cross-section shape and the wall thickness during the process,it can be found that the shape of the free deformation zone of the sheet metal,which is the most critical thinning area,can be described as an approximately spherical cap.According to this forming feature,back pressure deep drawing technology with solid granules medium on sheet metal was proposed to restrain drastic thinning at the bottom of the part through the joint friction effect of solid granules medium,the back pressure tringle and the sheet metal.Therefore,the deep drawing limit of the sheet metal is significantly improved.In order to fabricate thin-walled rotary parts with great drawing ratio and complex cross-sections,a finite element model based on the material property test of the solid granules medium was established to optimize the scheme of the back pressure deep drawing.The effects on the forming performance of sheet metal from back pressure load and the approach of blank holding control were analyzed through this model.展开更多
The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-e...The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel.展开更多
Casting-cold extrusion technology was presented to fabricate alttminum/copper clad composite, and copper tubes with different sketch sections were designed. The technology of aluminum/copper clad composite fabricated ...Casting-cold extrusion technology was presented to fabricate alttminum/copper clad composite, and copper tubes with different sketch sections were designed. The technology of aluminum/copper clad composite fabricated by casting-cold extrusion was simulated by DEFORM software using tubes with four arc grooves. The stress and strain in different deformation zones were analyzed. The groove size reduces gradually and the groove shape drives to triangle during the extrusion procedure. The maximum values of equivalent effective stress and radial stress appear in groove zones, and the maximum equivalent effective strain firstly is obtained also in groove zones. The grain size in groove zones is less than that in other zones. The experimental results are consistent with simulation results, which prove that the copper tubes with sketch section are favorable to the metallurgy bond of boundary interface between aluminum and copper.展开更多
The application of fine blanking to the manufacturing of helical gears directly from a strip has been restricted due to the traditional linear cutting stroke of the punch and die.In this work,rotational fine blanking ...The application of fine blanking to the manufacturing of helical gears directly from a strip has been restricted due to the traditional linear cutting stroke of the punch and die.In this work,rotational fine blanking which combined the linear and rotational motion of punch and counterpunch was applied for the forming of helical gears.A three-dimensional(3D) rigid-plastic finite element model was developed on the DEFORM-3D platform.By finite element simulation and analysis,the influences of key parameters on the punch load and cut surface were investigated.It is shown that: 1) with increasing the counterforce or helical angle,the punch load and the depth of die roll increase; 2) with increasing blank holder force,the punch load increases while the depth of die roll decreases; 3) V-ring indenter facilitates an improvement in the quality.The results of this research reveal the deformation mechanism of rotational fine blanking of helical gears,and provide valuable guidelines for further experimental studies.展开更多
Based on the traditional hydraulic bulging process,an improved hydraulic bulging process with axial feeding in the bulging process was proposed.The finite element simulation and experiment of bellows formed by the tra...Based on the traditional hydraulic bulging process,an improved hydraulic bulging process with axial feeding in the bulging process was proposed.The finite element simulation and experiment of bellows formed by the traditional and improved hydraulic bulging processes were conducted.The grid strain measurement system analysis results of strain and wall thickness distribution of the metal bellows,obtained from simulation and experiment,show that the maximum thinning rates of the wall thickness under the traditional and improved processes were 15%and 10%,respectively.And the wall thickness distribution of the metal bellows formed with improved process was more uniform.The strain values from the root to crown of the waveform increased gradually.However,the strain values were smaller than those of traditional process due to the axial feeding of the improved process in bulging process.展开更多
In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studi...In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studied. FE(finite element) models of bend pipe without defects and those with defects were introduced to analyze energy distribution, mode transition and defect detection of ultrasonic guided wave. FE simulation results were validated by experiments of four different bend pipes with circumferential defects in different positions. It is shown that most energy of T(0,1) mode or L(0,2) mode focuses on extrados of bend but little passes through intrados of bend, and T(0,1) mode or L(0,2) mode is converted to other possible non-axisymmetric modes when propagating through the bend and the defect after bend respectively. Furthermore, L(0,2) mode is more sensitive to circumferential notch than T(0,1) mode. The results of this work are beneficial for practical testing of pipes.展开更多
Surface strain fields of the designed compact tension(CT)specimens were investigated by digital image correlation(DIC)method.An integrative computer program was developed based on DIC algorithms to characterize the st...Surface strain fields of the designed compact tension(CT)specimens were investigated by digital image correlation(DIC)method.An integrative computer program was developed based on DIC algorithms to characterize the strain fields accurately and graphically.Strain distribution of the CT specimen was predicted by finite element method(FEM).Good agreement is observed between the surface strain fields measured by DIC and predicted by FEM,which reveals that the proposed method is practical and effective to determine the strain fields of CT specimens.Moreover,strain fields of the CT specimens with various compressive loads and notch diameters were studied by DIC.The experimental results can provide effective reference to usage of CT specimens in triaxial creep test by appropriately selecting specimen and experiment parameters.展开更多
Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subject...Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subjected to combined blast and fragment impacts.Built upon a recently developed laboratory-scale experimental technique to generate simulated combined loading through the impact of a fragment-foam composite projectile launched from a light gas gun,the dynamic responses of fullyclamped UHMWPE plates subjected to combined loading were characterized experimentally,with corresponding deformation and failure modes compared with those measured with simulated blast loading alone.Subsequently,to explore the underlying physical mechanisms,three-dimensional(3D)numerical simulations with the method of finite elements(FE)were systematically carried out.Numerical predictions compared favorably well with experimental measurements,thus validating the feasibility of the established FE model.Relative to the case of blast loading alone,combined blast and fragment loading led to larger maximum deflections of clamped UHMWPE plates.The position of the FSP in the foam sabot affected significantly the performance of a UHMWPE target,either enhancing or decreasing its ballistic resistance.When the blast loading and fragment impact arrived simultaneously at the target,its ballistic resistance was superior to that achieved when subjected to fragment impact alone,and benefited from the accelerated movement of the target due to simultaneous blast loading.展开更多
This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of exper...This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of experiment was used to arrange finite element analyses and experimental tests.Numerical and experimental tests were executed by changing rotary speed,feed rate and die angle.Taguchi design results show that increasing feed rate and decreasing rotary speed enhance Zener-Hollomon(Z)parameter and decrease average grain size,while die angle has no considerable effect.Increasing Z value reduces grain size and enhances flow stress of the processed samples,while the experiment with the highest Z value refines initial microstructure from 40 to 8μm and increases flow stress by 5 times.展开更多
基金Project(51105287)supported by the National Natural Science Foundation of China
文摘To investigate the effects of billet geometry on the cold precision forging process of a helical gear, six different billet geometries were designed utilizing the relief-hole principle. And the influences of the billet geometry on the forming load and the deformation uniformity were analyzed by three-dimensional (3D) finite element method (FEM) under the commercial software DEFORM 3D. The billet geometry was optimized to meet lower forming load and better deformation uniformity requirement. Deformation mechanism was studied through the distribution of flow velocity field and effective strain field. The forging experiments of the helical gear were successfully performed using lead material as a model material under the same process conditions used in the FE simulations. The results show that the forming load decreases as the diameter of relief-hole do increases, but the effect of do on the deformation uniformity is very complicated. The forming load is lower and the deformation is more uniform when do is 10 mm.
基金Project(51675100)supported by the National Natural Science Foundation of ChinaProject(2016ZX04004008)supported by the National Numerical Control Equipment Major Project of ChinaProject(6902002116)supported by the Foundation of Certain Ministry of China
文摘In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.
基金Project(51775479)supported by the National Natural Science Foundation of ChinaProject(E2017203046)supported by the Natural Science Foundation of Hebei Province,China
文摘A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spinning,and finally quenching in ice water after holding for 1 h at 498°C followed by the 2nd pass spinning.ABAQUS finite element software is used to simulate the internal spinning process of the products formed under different forming parameters.The distribution laws of spinning force,the stress and strain under different forming processes were compared and analyzed.The mechanical properties and microstructure of the products are subsequently analyzed.The results show that the strain and the residual stress in the skin area of the formed products under two-pass spinning process more uniform,and the hardness and the mechanical performance are improved.The microstructure of the products formed with the 0.15 mm thickness reduction at the 2nd pass is excellent.And the second phase grain size distributed uniformly in the range of 36μm.Whereas,the second phase particles are broken seriously and the size distribution inhomogeneity is increased when the thickness reduction in the skin area is greater than 0.20 mm at the 2nd pass spinning process.
文摘Studies on ballistic penetration to laminates is complicated,but important for design effective protection of structures.Experimental means of study is expensive and can often be dangerous.Numerical simulation has been an excellent supplement,but the computation is time-consuming.Main aim of this thesis was to develop and test an effective tool for real-time prediction of projectile penetrations to laminates by training a neural network and a decision tree regression model.A large number of finite element models were developed;the residual velocities of projectiles from finite element simulations were used as the target data and processed to produce sufficient number of training samples.Study focused on steel 4340tpolyurea laminates with various configurations.Four different 3D shapes of the projectiles were modeled and used in the training.The trained neural network and decision tree model was tested using independently generated test samples using finite element models.The predicted projectile velocity values using the trained machine learning models are then compared with the finite element simulation to verify the effectiveness of the models.Additionally,both models were trained using a published experimental data of projectile impacts to predict residual velocity of projectiles for the unseen samples.Performance of both the models was evaluated and compared.Models trained with Finite element simulation data samples were found capable to give more accurate predication,compared to the models trained with experimental data,because finite element modeling can generate much larger training set,and thus finite element solvers can serve as an excellent teacher.This study also showed that neural network model performs better with small experimental dataset compared to decision tree regression model.
基金Project(2011CB706605)supported by the National Basic Research Program of ChinaProject(IRT13087)supported by the Innovative Research Team Development Program of Ministry of Education of ChinaProject(2012-86)supported by the Grant from the High-end Talent Leading Program of Hubei Province,China
文摘Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key forming conditions of cold HR of bearing steel-balls were detailedly described. Then, by taking steel-ball rolling elements of the B7008 C angular contact ball bearing as an example, a completed 3D elastic-plastic FE model of cold HR forming process was established under SIMUFACT software environment. Furthermore, the deformation characteristics in HR process were discovered, including the forming process, evolution and distribution laws of strain, stress and damage based on Lemaitre relative damage model. The results reveal that the central loosening and cavity defects in HR process may have a combined effect of large negative hydrostatic pressure(positive mean stress)caused by multi-dimensional tensile stresses, high level transverse tensile stress, and circular-alternating shear stress in cross section.
基金Project(2014FJ1002)supported by the Science and Technology Major Project of Hunan Province,ChinaProject(2012AA041803)supported by National High Technology Research and Development Program of China。
文摘A shield machine with freezing function is proposed in order to realize tool change operation at atmospheric pressure. Furthermore, the transformation project of freezing cutterhead and tool change maintenance method are put forward. Taking the shield construction of Huanxi Power Tunnel as an example, a numerical analysis of the freezing cutter head of the project was carried out. The results show that when the brine temperature is-25 °C, after 30 d of freezing, the thickness of the frozen wall can reach 0.67 m and the average temperature drops to-9.9 °C. When the brine temperature is-30 °C, after 50 d of freezing, the thickness of the frozen wall can reach 1.01 m and the average temperature drops to-12.4 °C. If the thickness of the frozen wall is 0.5 m and the average temperature is-10 °C, as the design index of the frozen wall, the brine temperature should be lower than-28 °C to meet the excavation requirements in 30 d. Analyzing the frozen wall stress under 0.5 m thickness and-10 °C average temperature condition, the tensile safety factor and compressive safety factor are both greater than 2 at the most dangerous position, which can meet the tool change requirements for shield construction.
文摘The new numerical approach for analysis of the warhead transportations is suggested.This approach allows to control the warhead operability before its experimental analysis.The approach is implemented by the adequate models for the software ANSYS.Analysis of the loads at land operations and transportations of the warhead by natural roads,water and aviation allows to obtain the maximal values of loads,which are used in numerical simulations of the warhead.These loads give an opportunity to analyze the operability and the fatigue strength of the cartridge warhead.The numerical simulations of the attachments of the warhead combat elements are performed on the basis of the suggested method.The data of the numerical simulations verifies the operability of the fastener system of the warhead combat elements.
基金Project(2002A1040703) supported by the Science and Technology Fund of Guangdong Province
文摘A finite element analysis method was used to simulate the stamping process of the blade of a large concrete-mixer truck. The updated Lagrange method and the elasto-plastic constitutive equation were adopted to solve the large strain and displacement deformation of the blade. A modified Coulomb friction model was used to solve the sliding contact between the blade and the dies. The von Mises stress distribution in the blade, the spatial displacement variation and the spring-back of the typical node were investigated in the simulation. The von Mises stress in the blade where the spring-back occurs is lowered from 463.0MPa to 150.0MPa before and after the spring-back. A typical node in the blade has a 3.33mm spring-back in Z direction. The results of the (experiments) agree well with the simulation. The analysis results are valuable for designing optimal tool dies.
基金Science and Technology Project of Fire Rescue Bureau of Ministry of Emergency Management(Grant No.2022XFZD05)S&T Program of Hebei(Grant No.22375419D)National Natural Science Foundation of China(Grant No.11802160).
文摘As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response.
基金supported by the National Defense National Defense Pre-Research Foundation of China(Grant no.301030102)。
文摘Understanding the dynamic response of composite material cartridges during the firing process is of great significance for improving their reliability and safety.A theoretical model describing the dynamic response of composite material cartridges is established based on the thick-walled cylinder theory and rate-dependent constitutive model of composite materials.The correctness of the theoretical model is validated through finite element simulations of cartridge deformation.The influence of chamber pressure and cartridge wall thickness on the cartridge's deformation process and stress distribution is analyzed.The results indicate that the primary deformation of composite material cartridges inside the chamber is elastic deformation.Compared to metal cartridges,composite material cartridges require higher pressure for touching-chamber and are more prone to developing gaps after unloading to ensure smooth extraction.During the deformation process,the touching-chamber behavior of the cartridge can improve the stress distribution.Under the same chamber pressure,the touching-chamber behavior can reduce the circumferential stress by approximately 30%.The inner wall surface of the cartridge is a critical area that requires attention.The touching-chamber behavior can be facilitated by appropriately reducing the cartridge wall thickness while ensuring overall strength.This study can provide guidance for the optimization design of composite material cartridges.
基金Project(51164030)supported by the National Natural Science Foundation of China
文摘For contact dominated numerical control(NC) bending process of tube, the effect of friction on bending deformation behaviors should be focused on to achieve precision bending forming. A three dimensional(3D) elastic-plastic finite element(FE) model of NC bending process was established under ABAQUS/Explicit platform, and its reliability was validated by the experiment. Then, numerical study on bending deformation behaviors under different frictions between tube and various dies was explored from multiple aspects such as wrinkling, wall thickness change and cross section deformation. The results show that the large friction of wiper die-tube reduces the wrinkling wave ratio η and cross section deformation degree ΔD and increases the wall thinning degree Δt. The large friction of mandrel-tube causes large η, Δt and ΔD, and the onset of wrinkling near clamp die. The large friction of pressure die-tube reduces Δt and ΔD, and the friction on this interface has little effect on η. The large friction of bending die-tube reduces η and ΔD, and the friction on this interface has little effect on Δt. The reasonable friction coefficients on wiper die-tube, mandrel-tube, pressure die-tube and bending die-tube of 21-6-9(0Cr21Ni6Mn9N) stainless steel tube in NC bending are 0.05-0.15, 0.05-0.15, 0.25-0.35 and 0.25-0.35, respectively. The results can provide a guideline for applying the friction conditions to establish the robust bending environment for stable and precise bending deformation of tube bending.
基金Project(50775197) supported by the National Natural Science Foundation of China
文摘The experimental die apparatus of the solid granules medium forming on sheet metal was designed and manufactured.Typical parts,such as conical,parabolic,cylindrical and square-box-shaped components,were successfully trial-produced as well.According to the analysis of the changing trends of the cross-section shape and the wall thickness during the process,it can be found that the shape of the free deformation zone of the sheet metal,which is the most critical thinning area,can be described as an approximately spherical cap.According to this forming feature,back pressure deep drawing technology with solid granules medium on sheet metal was proposed to restrain drastic thinning at the bottom of the part through the joint friction effect of solid granules medium,the back pressure tringle and the sheet metal.Therefore,the deep drawing limit of the sheet metal is significantly improved.In order to fabricate thin-walled rotary parts with great drawing ratio and complex cross-sections,a finite element model based on the material property test of the solid granules medium was established to optimize the scheme of the back pressure deep drawing.The effects on the forming performance of sheet metal from back pressure load and the approach of blank holding control were analyzed through this model.
文摘The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel.
文摘Casting-cold extrusion technology was presented to fabricate alttminum/copper clad composite, and copper tubes with different sketch sections were designed. The technology of aluminum/copper clad composite fabricated by casting-cold extrusion was simulated by DEFORM software using tubes with four arc grooves. The stress and strain in different deformation zones were analyzed. The groove size reduces gradually and the groove shape drives to triangle during the extrusion procedure. The maximum values of equivalent effective stress and radial stress appear in groove zones, and the maximum equivalent effective strain firstly is obtained also in groove zones. The grain size in groove zones is less than that in other zones. The experimental results are consistent with simulation results, which prove that the copper tubes with sketch section are favorable to the metallurgy bond of boundary interface between aluminum and copper.
基金Project(51105287)supported by the National Natural Science Foundation of ChinaProject(2011-P05)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject(2011-IV-009)supported by the Fundamental Research Funds for the Central Universities,China
文摘The application of fine blanking to the manufacturing of helical gears directly from a strip has been restricted due to the traditional linear cutting stroke of the punch and die.In this work,rotational fine blanking which combined the linear and rotational motion of punch and counterpunch was applied for the forming of helical gears.A three-dimensional(3D) rigid-plastic finite element model was developed on the DEFORM-3D platform.By finite element simulation and analysis,the influences of key parameters on the punch load and cut surface were investigated.It is shown that: 1) with increasing the counterforce or helical angle,the punch load and the depth of die roll increase; 2) with increasing blank holder force,the punch load increases while the depth of die roll decreases; 3) V-ring indenter facilitates an improvement in the quality.The results of this research reveal the deformation mechanism of rotational fine blanking of helical gears,and provide valuable guidelines for further experimental studies.
基金Project (51775479) supported by the National Natural Science Foundation of ChinaProject (E2017203046) supported by the Natural Science Foundation of Hebei Province,China
文摘Based on the traditional hydraulic bulging process,an improved hydraulic bulging process with axial feeding in the bulging process was proposed.The finite element simulation and experiment of bellows formed by the traditional and improved hydraulic bulging processes were conducted.The grid strain measurement system analysis results of strain and wall thickness distribution of the metal bellows,obtained from simulation and experiment,show that the maximum thinning rates of the wall thickness under the traditional and improved processes were 15%and 10%,respectively.And the wall thickness distribution of the metal bellows formed with improved process was more uniform.The strain values from the root to crown of the waveform increased gradually.However,the strain values were smaller than those of traditional process due to the axial feeding of the improved process in bulging process.
基金Project(51265044)supported by the National Natural Science Foundation of ChinaProject(2013TT2028)supported by the Science and Technology Project of Hunan Province of ChinaProject(2012QK162)supported by the Science and Technology Project of General Administration of Quality Supervision,Inspection and Quarantine of China
文摘In order to analyze the possibility of detecting defects in bend pipe using low-frequency ultrasonic guided wave, the propagation of T(0,1) mode and L(0,2) mode through straight-curved-straight pipe sections was studied. FE(finite element) models of bend pipe without defects and those with defects were introduced to analyze energy distribution, mode transition and defect detection of ultrasonic guided wave. FE simulation results were validated by experiments of four different bend pipes with circumferential defects in different positions. It is shown that most energy of T(0,1) mode or L(0,2) mode focuses on extrados of bend but little passes through intrados of bend, and T(0,1) mode or L(0,2) mode is converted to other possible non-axisymmetric modes when propagating through the bend and the defect after bend respectively. Furthermore, L(0,2) mode is more sensitive to circumferential notch than T(0,1) mode. The results of this work are beneficial for practical testing of pipes.
基金Projects(51575347,51405297,51204107)supported by the National Natural Science Foundation of China
文摘Surface strain fields of the designed compact tension(CT)specimens were investigated by digital image correlation(DIC)method.An integrative computer program was developed based on DIC algorithms to characterize the strain fields accurately and graphically.Strain distribution of the CT specimen was predicted by finite element method(FEM).Good agreement is observed between the surface strain fields measured by DIC and predicted by FEM,which reveals that the proposed method is practical and effective to determine the strain fields of CT specimens.Moreover,strain fields of the CT specimens with various compressive loads and notch diameters were studied by DIC.The experimental results can provide effective reference to usage of CT specimens in triaxial creep test by appropriately selecting specimen and experiment parameters.
基金supported by the National Natural Science Foundation of China(Grant No.12032010,11902155 and 12072250)by the Natural Science Foundation of Jiangsu Province(Grant No.BK20190382)+2 种基金by the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Grant No.MCMS-I-0222K01)by the Fund of Prospective Layout of Scientific Research for NUAAby the Foundation for the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subjected to combined blast and fragment impacts.Built upon a recently developed laboratory-scale experimental technique to generate simulated combined loading through the impact of a fragment-foam composite projectile launched from a light gas gun,the dynamic responses of fullyclamped UHMWPE plates subjected to combined loading were characterized experimentally,with corresponding deformation and failure modes compared with those measured with simulated blast loading alone.Subsequently,to explore the underlying physical mechanisms,three-dimensional(3D)numerical simulations with the method of finite elements(FE)were systematically carried out.Numerical predictions compared favorably well with experimental measurements,thus validating the feasibility of the established FE model.Relative to the case of blast loading alone,combined blast and fragment loading led to larger maximum deflections of clamped UHMWPE plates.The position of the FSP in the foam sabot affected significantly the performance of a UHMWPE target,either enhancing or decreasing its ballistic resistance.When the blast loading and fragment impact arrived simultaneously at the target,its ballistic resistance was superior to that achieved when subjected to fragment impact alone,and benefited from the accelerated movement of the target due to simultaneous blast loading.
文摘This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of experiment was used to arrange finite element analyses and experimental tests.Numerical and experimental tests were executed by changing rotary speed,feed rate and die angle.Taguchi design results show that increasing feed rate and decreasing rotary speed enhance Zener-Hollomon(Z)parameter and decrease average grain size,while die angle has no considerable effect.Increasing Z value reduces grain size and enhances flow stress of the processed samples,while the experiment with the highest Z value refines initial microstructure from 40 to 8μm and increases flow stress by 5 times.