Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the...Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the proposed optimization problem and the Newton algorithm is used to figure out the optimal solution. The proposed method can find an optimal solution with a relatively small parameter p, which avoids the numerical overflow in the traditional entropy function methods. It is a new approach to solve support vector machine. The theoretical analysis and experimental results illustrate the feasibility and efficiency of the proposed algorithm.展开更多
To solve the inequality problem, an adjustable entropy method is proposed. An inequality problem can be transformed into a minimax problem which is nondifferentiable; then an adjustable entropy is used to smooth the m...To solve the inequality problem, an adjustable entropy method is proposed. An inequality problem can be transformed into a minimax problem which is nondifferentiable; then an adjustable entropy is used to smooth the minimax problem. The solution of inequalities can be approached by using a BFGS algorithm of the standard optimization method. Some properties of the new approximate function are presented and then the global convergence are given according to the algorithm. Two numerical examples illustrate that the proposed method is efficient and is superior to the former ones.展开更多
Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition...Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition method based on a small amount of labeled data is developed.First,a small amount of labeled data are randomly sampled by using the bootstrap method,loss functions for three common deep learning net-works are improved,the uniform distribution and cross-entropy function are combined to reduce the overconfidence of softmax classification.Subsequently,the dataset obtained after sam-pling is adopted to train three improved networks so as to build the initial model.In addition,the unlabeled data are preliminarily screened through dynamic time warping(DTW)and then input into the initial model trained previously for judgment.If the judg-ment results of two or more networks are consistent,the unla-beled data are labeled and put into the labeled data set.Lastly,the three network models are input into the labeled dataset for training,and the final model is built.As revealed by the simula-tion results,the semi-supervised learning method adopted in this paper is capable of exploiting a small amount of labeled data and basically achieving the accuracy of labeled data recognition.展开更多
An approach of limit state equation for surrounding rock was put forward based on deformation criterion. A method of symmetrical sampling of basic random variables adopted by classical response surface method was mend...An approach of limit state equation for surrounding rock was put forward based on deformation criterion. A method of symmetrical sampling of basic random variables adopted by classical response surface method was mended, and peak value and deflection degree of basic random variables distribution curve were took into account in the mended sampling method. A calculation way of probability moment, based on mended Rosenbluth method, suitable for non-explicit performance function was put forward. The first, second, third and fourth order moments of functional function value were calculated by mended Rosenbluth method through the first, second, third and fourth order moments of basic random variable. A probability density the function(PDF) of functional function was deduced through its first, second, third and fourth moments, the PDF in the new method took the place of the method of quadratic polynomial to approximate real functional function and reliability probability was calculated through integral by the PDF for random variable of functional function value in the new method. The result shows that the improved response surface method can adapt to various statistic distribution types of basic random variables, its calculation process is legible and need not itemtive circulation. In addition, a stability probability of surrounding rock for a tunnel was calculated by the improved method, whose workload is only 30% of classical method and its accuracy is comparative.展开更多
A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monito...A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target.展开更多
基金the National Natural Science Foundation of China (60574075)
文摘Based on KKT complementary condition in optimization theory, an unconstrained non-differential optimization model for support vector machine is proposed. An adjustable entropy function method is given to deal with the proposed optimization problem and the Newton algorithm is used to figure out the optimal solution. The proposed method can find an optimal solution with a relatively small parameter p, which avoids the numerical overflow in the traditional entropy function methods. It is a new approach to solve support vector machine. The theoretical analysis and experimental results illustrate the feasibility and efficiency of the proposed algorithm.
文摘To solve the inequality problem, an adjustable entropy method is proposed. An inequality problem can be transformed into a minimax problem which is nondifferentiable; then an adjustable entropy is used to smooth the minimax problem. The solution of inequalities can be approached by using a BFGS algorithm of the standard optimization method. Some properties of the new approximate function are presented and then the global convergence are given according to the algorithm. Two numerical examples illustrate that the proposed method is efficient and is superior to the former ones.
文摘Rare labeled data are difficult to recognize by using conventional methods in the process of radar emitter recogni-tion.To solve this problem,an optimized cooperative semi-supervised learning radar emitter recognition method based on a small amount of labeled data is developed.First,a small amount of labeled data are randomly sampled by using the bootstrap method,loss functions for three common deep learning net-works are improved,the uniform distribution and cross-entropy function are combined to reduce the overconfidence of softmax classification.Subsequently,the dataset obtained after sam-pling is adopted to train three improved networks so as to build the initial model.In addition,the unlabeled data are preliminarily screened through dynamic time warping(DTW)and then input into the initial model trained previously for judgment.If the judg-ment results of two or more networks are consistent,the unla-beled data are labeled and put into the labeled data set.Lastly,the three network models are input into the labeled dataset for training,and the final model is built.As revealed by the simula-tion results,the semi-supervised learning method adopted in this paper is capable of exploiting a small amount of labeled data and basically achieving the accuracy of labeled data recognition.
基金Project(50378036) supported by the National Natural Science Foundation of China Project (200503) supported by the Foundation ofCommunications Department of Hunan Province, China
文摘An approach of limit state equation for surrounding rock was put forward based on deformation criterion. A method of symmetrical sampling of basic random variables adopted by classical response surface method was mended, and peak value and deflection degree of basic random variables distribution curve were took into account in the mended sampling method. A calculation way of probability moment, based on mended Rosenbluth method, suitable for non-explicit performance function was put forward. The first, second, third and fourth order moments of functional function value were calculated by mended Rosenbluth method through the first, second, third and fourth order moments of basic random variable. A probability density the function(PDF) of functional function was deduced through its first, second, third and fourth moments, the PDF in the new method took the place of the method of quadratic polynomial to approximate real functional function and reliability probability was calculated through integral by the PDF for random variable of functional function value in the new method. The result shows that the improved response surface method can adapt to various statistic distribution types of basic random variables, its calculation process is legible and need not itemtive circulation. In addition, a stability probability of surrounding rock for a tunnel was calculated by the improved method, whose workload is only 30% of classical method and its accuracy is comparative.
基金funded by National Natural Science Foundation of China(Grant No. 51805146)the Fundamental Research Funds for the Central Universities (Grant No. B200202221)+1 种基金Jiangsu Key R&D Program (Grant Nos. BE2018004-1, BE2018004)College Students’ Innovative Entrepreneurial Training Plan Program (Grant No. 2020102941513)。
文摘A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target.