期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
Exploring the mechanism of a novel cationic surfactant in bastnaesite flotation via the integration of DFT calculations,in-situ AFM and electrochemistry 被引量:1
1
作者 Chang Liu Longhua Xu +7 位作者 Jiushuai Deng Zhiguo Han Yi Li Jiahui Wu Jia Tian Donghui Wang Kai Xue Jinmei Fang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1475-1484,共10页
Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and ... Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite. 展开更多
关键词 Novel cationic surfactant DFT calculation BASTNAESITE electrochemistry In-situ AFM
在线阅读 下载PDF
Electrochemistry and DFT study of galvanic interaction on the surface of monoclinic pyrrhotite(001)and galena(100)
2
作者 Tingsheng Qiu Kaiwei Ding +4 位作者 Huashan Yan Liu Yang Hao Wu Guanfei Zhao Xianhui Qiu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1151-1162,共12页
The electrochemical interaction between galena and monoclinic pyrrhotite was investigated to examine its impact on the physical and chemical properties of the mineral micro-surface.This investigation employed techniqu... The electrochemical interaction between galena and monoclinic pyrrhotite was investigated to examine its impact on the physical and chemical properties of the mineral micro-surface.This investigation employed techniques such as electrochemistry,metal ion stripping,X-ray photoelectron spectroscopy,and quantum chemistry.The electrochemical test results demonstrate that the galena surface in the electro-couple system exhibits a lower electrostatic potential and higher electrochemical activity compared to the monoclinic pyrrhotite surface,rendering it more susceptible to oxidation dissolution.Monoclinic pyrrhotite significantly amplifies the corrosion rate of the galena surface.Mulliken charge population calculations indicate that electrons are consistently transferred from galena to monoclinic pyrrhotite,with the number of electron transfers on the mineral surface increasing as the interaction distance decreases.The analysis of state density revealed a shift in the surface state density of galena towards lower energy levels,resulting in decreased reactivity and increased difficulty for the reagent to adsorb onto the mineral surface.Conversely,monoclinic pyrrhotite exhibited an opposite trend.The X-ray photoelectron spectroscopy(XPS)test results indicate that galvanic interaction leads to the formation of hydrophilic substances,PbS_(x)O_(y) and Pb(OH)_(2),on the surface of galena.Additionally,the surface of monoclinic pyrrhotite not only adsorbs Pb^(2+)but also undergoes S^(0) formation,thereby augmenting its hydrophobic nature. 展开更多
关键词 electrochemistry Galvanic interaction Monoclinic pyrrhotite GALENA Density functional theory
在线阅读 下载PDF
Platinum Nanoparticle-based Collision Electrochemistry for Rapid Detection of Breast Cancer MCF-7 Cells
3
作者 Fu-Xing Qin Ming-Ke Li +4 位作者 Hui-Long Zhou Wei Wen Xiu-Hua Zhang Sheng-Fu Wang Zhen Wu 《电化学(中英文)》 CAS 北大核心 2024年第10期19-27,共9页
Cancer metastasis is the leading cause of death in cancer patients worldwide and one of the major challenges in treating cancer.Circulating tumor cells(CTCs)play a pivotal role in cancer metastasis.However,the content... Cancer metastasis is the leading cause of death in cancer patients worldwide and one of the major challenges in treating cancer.Circulating tumor cells(CTCs)play a pivotal role in cancer metastasis.However,the content of CTCs in peripheral blood is minimal,so the detection of CTCs in real samples is extremely challenging.Therefore,efficient enrichment and early detection of CTCs are essential to achieve timely diagnosis of diseases.In this work,we constructed an innovative and sensitive single-nanoparticle collision electrochemistry(SNCE)biosensor for the detection of MCF-7 cells(human breast cancer cells)by immunomagnetic separation technique and liposome signal amplification strategy.Liposomes embedded with platinum nanoparticles(Pt NPs)were used as signal probes,and homemade gold ultramicroelectrodes(Au UME)were used as the working electrodes.The effective collision between Pt NPs and UME would produce distinguishable step-type current.MCF-7 cells were accurately quantified according to the relationship between cell concentration and collision frequency(the number of step-type currents generated per unit time),realizing highly sensitive and specific detection of MCF-7 cells.The SNCE biosensor has a linear range of 10 cells·mL^(-1)to 10^(5) cells·mL^(-1)with a detection limit as low as 5 cells·mL^(-1).In addition,the successful detection of MCF-7 cells in complex samples showed that the SNCE biosensors have great potential for patient sample detection. 展开更多
关键词 Circulating tumor cells Single-nanoparticle collision electrochemistry Immunomagnetic separation LIPOSOME Platinum nanoparticles
在线阅读 下载PDF
Single-Entity Collisional Electrochemistry at the Micro-and/or Nano-Interface Between Two Immiscible Electrolyte Solutions
4
作者 Li-Fang Yang Jun-Jie Chen +7 位作者 Ling-Yu Chen Si-Qi Jin Tao-Xiong Fang Si-Jia He Liang-Jun Shen Xin-Jian Huang Xiao-Hang Sun Hai-Qiang Deng 《电化学(中英文)》 CAS 北大核心 2024年第11期1-16,I0001,共17页
Single-entity collisional electrochemistry(SECE)is a branch of single-entity electrochemistry.It can directly characterize entities/particles with single particle resolution through random collisions between particles... Single-entity collisional electrochemistry(SECE)is a branch of single-entity electrochemistry.It can directly characterize entities/particles with single particle resolution through random collisions between particles and electrodes in a solution,and obtain rich physicochemical information,thus becoming one of the frontiers of electroanalytical chemistry in the past two decades.Interestingly,the(micro/nanoscale)sensing electrodes have evolved from a polarizable liquid/liquid(mercury/liquid)interface to a solid/liquid interface and then to a liquid/liquid interface(i.e.,an interface between twoimmiscible electrolyte solutions,ITIES),as if they have completed a cycle(but in fact they have not).ITIES has become the latest sensing electrode in the booming SECE due to its polarizability(up to 1.1 V at the water/a,a,a-trifluorotoluene interface)and high reproducibility.The four measurement modes(direct electrolysis,mediated electrolysis,current blockade,and charge displacement)developed in the realm of SECE at solid/liquid interfaces have also been fully realized at the miniature ITIES.This article will discuss these four modes at the ITIES from the perspectives of basic concepts,operating mechanisms,and latest developments(e.g.,discovery of ionosomes,blockade effect of Faradaic ion transfer,etc.),and look forward to the future development and direction of this emerging field. 展开更多
关键词 Single-entity collisional electrochemistry Interface between two immiscible electrolyte solutions Charge transfer
在线阅读 下载PDF
A semiconductor-electrochemistry model for design of high-rate Li ion battery 被引量:4
5
作者 Wei Zhang Dong Wang Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期100-106,共7页
For designing batteries with high-rate and long-life, electronic/ionic transport and reaction must be unified for metal oxide electrodes. However, it remains challenging for effectively integrating the whole substrate... For designing batteries with high-rate and long-life, electronic/ionic transport and reaction must be unified for metal oxide electrodes. However, it remains challenging for effectively integrating the whole substrate/active materials/electrolyte interfaces. Herein by taking Li ion battery as example, we propose a semiconductor-electrochemistry model by which a general but novel insight has been gained into interfacial effect in batteries. Different from those traditional viewpoints, this derived model lies across from physics to electrochemistry. A reaction driving force can be expressed in terms of Fermi energy change,based on the tradeoff between electronic and ionic concentration at the reaction interfacial region. Therefore, at thermodynamic-controlled interface I of substrate/electrode, increasing contact areas can afford higher activity for active materials. Whereas at kinetically-governed interface II of electrode/electrolyte or inside active materials, it is crucial to guarantee high-reaction Li ionic concentration, with which some sufficient reaction degrees can reach. 展开更多
关键词 SEMICONDUCTOR electrochemistry Interface Surface FERMI energy SEI
在线阅读 下载PDF
Metal-organic frameworks-derived metal phosphides for electrochemistry application 被引量:3
6
作者 Xinru Tang Nan Li Huan Pang 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期636-661,共26页
Metal-organic frameworks(MOFs)with high porosity and variable structure have attracted extensive attention in the field of electrochemistry,but their poor conductivity and stability have limited their development.Mate... Metal-organic frameworks(MOFs)with high porosity and variable structure have attracted extensive attention in the field of electrochemistry,but their poor conductivity and stability have limited their development.Materials derived from MOFs can maintain the structural diversity and porosity characteristics of MOFs while improving their electrical conductivity and stability.Metal phosphides play an important role in electrochemistry because they possess rich active sites,unique physicochemical properties,and a porous structure.Published results show that MOF-derived metal-phosphides materials have great promise in the field of electrochemistry due to their controllable structure,high specific surface area,high stability and excellent electrical conductivity.MOF-derived metal-phosphides with significant electrochemical properties can be obtained by simply,economical and scalable synthetic methods.This work reviews the application of MOF-derived metal phosphides in electrochemistry.Specifically,the synthesis methodology and morphological characterization of MOFs derived metal-phosphides and their application in electrochemistry are described.Based on recent scientific advances,we discuss the challenges and opportunities for future research on MOF-derived metal-phosphides materials. 展开更多
关键词 Metal-organic frameworks Metal phosphides electrochemistry
在线阅读 下载PDF
Recent advances in the electrochemistry of layered post-transition metal chalcogenide nanomaterials for hydrogen evolution reaction 被引量:2
7
作者 Yong Wang Yang Zhao +1 位作者 Xiang Ding Liang Qiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期451-479,共29页
Layered two-dimensional(2 D)materials have received tremendous attention due to their unique physical and chemical properties when downsized to single or few layers.Several types of layered materials,especially transi... Layered two-dimensional(2 D)materials have received tremendous attention due to their unique physical and chemical properties when downsized to single or few layers.Several types of layered materials,especially transition metal dichalcogenides(TMDs)have been demonstrated to be good electrode materials due to their interesting physical and chemical properties.Apart from TMDs,post-transition metal chalcogenides(PTMCs)recently have emerged as a family of important semiconducting materials for electrochemical studies.PTMCs are layered materials which are composed of post-transition metals raging from main group IIIA to group VA(Ga,In,Ge,Sn,Sb and Bi)and group VI chalcogen atoms(S,selenium(Se)and tellurium(Te)).Although a large number of literatures have reviewed the electrochemical and electrocatalytic applications of TMDs,less attention has been focused on PTMCs.In this review,we focus our attention on PTMCs with the aim to provide a summary to describe their fundamental electrochemical properties and electrocatalytic activity towards hydrogen evolution reaction(HER).The characteristic chemical compositions and crystal structures of PTMCs are firstly discussed,which are different from TMDs.Then,inherent electrochemistry of PTMCs is discussed to unveil the well-defined redox behaviors of PTMCs,which could potentially affect their efficiency when applied as electrode materials.Following,we focus our attention on electrocatalytic activity of PTMCs towards HER including novel synthetic strategies developed for the optimization of their HER activity.This review ends with the perspectives for the future research direction in the field of PTMC based electrocatalysts. 展开更多
关键词 Post-transition metal chalcogenide Layered material Chemical composition Crystal structure Inherent electrochemistry Hydrogen evolution
在线阅读 下载PDF
Unveiling the redox electrochemistry of 1D,urchin-like vanadium sulfide electrodes for high-performance hybrid supercapacitors 被引量:2
8
作者 K.Karuppasamy Dhanasekaran Vikraman +6 位作者 Sajjad Hussain Balamurugan Thirumalraj P.Santhoshkumar Hemalatha Parangusan Hyun-Chang Park Jongwan Jung Hyun-Seok Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期569-580,共12页
Exploring novel versatile electrode materials with outstanding electrochemical performance is the key to the development of advanced energy conversion and storage devices.In this work,we aim to construct new-fangled o... Exploring novel versatile electrode materials with outstanding electrochemical performance is the key to the development of advanced energy conversion and storage devices.In this work,we aim to construct new-fangled one-dimensional(1D)quasi-layered patronite vanadium tetrasulfide(VS_(4))nanostructures by using different sulfur sources,namely thiourea,thioacetamide,and L-cysteine through an ethyleneaminetetraacetic-acid(EDTA)-mediated solvothermal process.The as-prepared VS4exhibits several unique morphologies such as urchin,fluffy nanoflower,and polyhedron with appropriate surface areas.Among the prepared nanostructures,the VS_(4)-1@NF nanostructure exhibited excellent electrochemical properties in 6 M KOH solution,and we explored its redox electrochemistry in detail.The asprepared VS_(4)-1@NF electrode exhibited battery-type redox characteristics with the highest capacity of280 C g^(-1)in a three-electrode assembly.Moreover,it offered a capacity of 123 F g^(-1)in a hybrid twoelectrode set-up at 1 A g^(-1)with the highest specific energy and specific power of 38.5 W h kg^(-1)and750 W kg^(-1),respectively.Furthermore,to ensure the practical applicability and real-world performance of the prepared hybrid AC@NF//VS_(4)-1@NF cell,we performed a cycling stability test with more than 5,000galvanostatic charge–discharge cycles at 2 A g^(-1),and the cell retained around 84.7%of its capacitance even after 5,000 cycles with a CE of 96.1%. 展开更多
关键词 Patronite Redox electrochemistry Urchin VS_(4) 1D material MESOPOROUS
在线阅读 下载PDF
Understanding oxygen electrochemistry in aprotic Li-O_2 batteries 被引量:3
9
作者 Liang Wang Yantao Zhang +2 位作者 Zhenjie Liu Limin Guo Zhangquan Peng 《Green Energy & Environment》 SCIE 2017年第3期186-203,共18页
In the past decade, the aprotic lithium-oxygen(Li-O_2) battery has generated a great deal of interest because theoretically it can store more energy than today's lithium-ion batteries. Although considerable resear... In the past decade, the aprotic lithium-oxygen(Li-O_2) battery has generated a great deal of interest because theoretically it can store more energy than today's lithium-ion batteries. Although considerable research efforts have been devoted to the R&D of this potentially disruptive technology, many scientific and engineering obstacles still remain to be addressed before a practical device could be realized. In this review, we summarize recent advances in the fundamental understanding of the O_2 electrochemistry in Li-O_2 batteries, including the O_2 reduction to Li_2O_2 on discharge and the reverse Li_2 O_2 oxidation on recharge and factors that exert strong influences on the redox of O_2/Li_2O_2. In addition,challenges and perspectives are also provided for the future study of Li—O_2 batteries. 展开更多
关键词 Lithium-oxygen battery Oxygen electrochemistry Mechanism
在线阅读 下载PDF
Nanotube-based heterostructures for electrochemistry: A mini-review on lithium storage, hydrogen evolution and beyond 被引量:1
10
作者 Yongjia Zheng Wanyu Dai +4 位作者 Xue-Qiang Zhang Jia-Qi Huang Shigeo Maruyama Hong Yuan Rong Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期630-642,I0016,共14页
Nanotube-based mixed-dimensional or one-dimensional heterostructures have attracted great attention recently because of their unique physical properties and therefore potential for novel devices. Their chemical proper... Nanotube-based mixed-dimensional or one-dimensional heterostructures have attracted great attention recently because of their unique physical properties and therefore potential for novel devices. Their chemical properties, however, were less explored but can be utilized for energy storage and conversion.In this review, we summarize the recent progress of nanotube-based low dimensional materials for electrochemistry, in particular, lithium storage and hydrogen evolution. First, we describe the atomic structure of low-dimensional heterostructures and briefly touch previous work on planar van der Waals heterostructures(2D+2D) in electrochemistry applications. Then we focus this review on the more recently developed nanotube-based, i.e., 1D+2D and 1D + 1D heterostructures, and discuss their various preparation approaches and electrochemical performances. Finally, we outline the challenges and opportunities in this direction and particularly emphasize the possibility of building high-performance electrodes using a single-walled carbon nanotube-based ultra-thin 1D heterostructure, and the importance of understanding the fundamental mechanism at atomic precision. 展开更多
关键词 Lithium storage Hydrogen evolution electrochemistry Van der Waals heterostructures Carbon nanotube
在线阅读 下载PDF
Hot electron electrochemistry at silver activated by femtosecond laser pulses
11
作者 Oskar Armbruster Hannes Pöhl Wolfgang Kautek 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第6期31-36,共6页
A silver microelectrode with a diameter of 30μm in an aqueous K_(2)SO_(4) electrolyte was irradiated with 55 fs and 213 fs laser pulses.This caused the emission of electrons which transiently charged the electrochemi... A silver microelectrode with a diameter of 30μm in an aqueous K_(2)SO_(4) electrolyte was irradiated with 55 fs and 213 fs laser pulses.This caused the emission of electrons which transiently charged the electrochemical double layer.The two applied pulse durations were significantly shorter than the electron-phonon relaxation time.The laser pulse durations had negligible impact on the emitted charge,which is incompatible with multiphoton emission.On the other hand,the ob-served dependence of emitted charge on laser fluence and electrode potential supports the thermionic emission mechanism. 展开更多
关键词 hot electron emission femtosecond laser laser electrochemistry silver electrode
在线阅读 下载PDF
Preface to the Special Issue on Energy Electrochemistry
12
作者 Zhongqun Tian Jun Chen Yongyao Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期I0006-I0006,共1页
Energy electrochemistry is one of the key branches of energy chemistry. Its main goal is to develop chemical energy storage devices with highperformance, high safety, long life and low cost for wide applications. The ... Energy electrochemistry is one of the key branches of energy chemistry. Its main goal is to develop chemical energy storage devices with highperformance, high safety, long life and low cost for wide applications. The key research areas include lithium ion batteries, fuel cells and redox flowbatteries, and the key future directions include Li-S batteries, Li-air batteries, all solid-state batteries and batteries for wearable electronics. Recently therehave been some significant advances spanning from fundamental discovery to application-specific prototypes in this field. For this reason. J. Energy Chem. 展开更多
关键词 Preface to the Special Issue on Energy electrochemistry
在线阅读 下载PDF
Advances in TENGs for Marine Energy Harvesting and In Situ Electrochemistry
13
作者 Chuguo Zhang Yijun Hao +4 位作者 Xiangqian Lu Wei Su Hongke Zhang Zhong Lin Wang Xiuhan Li 《Nano-Micro Letters》 2025年第5期540-603,共64页
The large-scale use of ample marine energy will be one of the most important ways for human to achieve sustainable development through carbon neutral development plans.As a burgeoning technological method for electrom... The large-scale use of ample marine energy will be one of the most important ways for human to achieve sustainable development through carbon neutral development plans.As a burgeoning technological method for electromechanical conversion,triboelectric nanogenerator(TENG)has significant advantages in marine energy for its low weight,cost-effectiveness,and high efficiency in low-frequency range.It can realize the efficient and economical harvesting of low-frequency blue energy by constructing the floating marine energy harvesting TENG.This paper firstly introduces the power transfer process and structural composition of TENG for marine energy harvesting in detail.In addition,the latest research works of TENG on marine energy harvesting in basic research and structural design are systematically reviewed by category.Finally,the advanced research progress in the power take-off types and engineering study of TENG with the marine energy are comprehensively generalized.Importantly,the challenges and problems faced by TENG in marine energy and in situ electrochemical application are summarized and the corresponding prospects and suggestions are proposed for the subsequent development direction and prospects to look forward to promoting the commercialization process of this field. 展开更多
关键词 Triboelectric nanogenerator Marine energy Power take-off Self-powered electrochemistry
在线阅读 下载PDF
In situ construction of Cu(Ⅰ)-Cu(Ⅱ) pairs for efficient electrocatalytic nitrate reduction reaction to ammonia
14
作者 Muyun Zheng Yuchi Wan +7 位作者 Leping Yang Shen Ao Wangyang Fu Zhengjun Zhang Zheng-Hong Huang Tao Ling Feiyu Kang Ruitao Lv 《Journal of Energy Chemistry》 2025年第1期106-113,共8页
Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles in... Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states. 展开更多
关键词 Ammonia synthesis Cu oxidation state electrochemistry Nitrate reduction In situ XPS
在线阅读 下载PDF
CO_(2)-mediated bicarbonate conversion to concentrated formate in a CEM-based electrolyzer
15
作者 Haocheng Xiong Donghuan Wu +5 位作者 Haonan Li Andrew Li Qikun Hu Siyao Song Bingjun Xu Qi Lu 《Journal of Energy Chemistry》 2025年第1期605-611,共7页
Renewable energy-driven bicarbonate conversion to valuable chemicals presents an attractive strategy for mitigating CO_(2)emissions,as bicarbonate can be efficiently generated from the capture of atmospheric CO_(2)usi... Renewable energy-driven bicarbonate conversion to valuable chemicals presents an attractive strategy for mitigating CO_(2)emissions,as bicarbonate can be efficiently generated from the capture of atmospheric CO_(2)using alkaline solutions with reactive absorption.In this work,we present a CO_(2)-mediated bicarbonate conversion to pure formate using a cation exchange membrane-based electrolyzer with a 25 cm^(2)electrode area.Our electrolysis achieved selectivities exceeding 75%for formate at a total current of 2.5 A,achieving formate concentrations up to 1.2 M and yields as high as 95%over extended periods.The techno-economic assessment confirmed the economic viability of the process,highlighting the potential for bicarbonate electrolysis as a sustainable method for producing valuable chemicals. 展开更多
关键词 ELECTROCATALYSIS Techno-economic assessments electrochemistry Flow electrolyzer
在线阅读 下载PDF
Classification and technical target of water electrolysis for hydrogen production 被引量:3
16
作者 Kahyun Ham Sooan Bae Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期554-576,I0012,共24页
Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro... Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology. 展开更多
关键词 Water electrolysis Hydrogen production Technical target electrochemistry
在线阅读 下载PDF
Current and further trajectories in designing functional materials for solid oxide electrochemical cells:A review of other reviews 被引量:2
17
作者 Stanislav Baratov Elena Filonova +6 位作者 Anastasiya Ivanova Muhammad Bilal Hanif Muneeb Irshad Muhammad Zubair Khan Martin Motola Sajid Rauf Dmitry Medvedev 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期302-331,共30页
Complex oxides are an important class of materials with enormous potential for electrochemical appli-cations.Depending on their composition and structure,such complex oxides can exhibit either a single conductivity(ox... Complex oxides are an important class of materials with enormous potential for electrochemical appli-cations.Depending on their composition and structure,such complex oxides can exhibit either a single conductivity(oxygen-ionic or protonic,or n-type,or p-type electronic)or a combination thereof gener-ating distinct dual-conducting or even triple-conducting materials.These properties enable their use as diverse functional materials for solid oxide fuel cells,solid oxide electrolysis cells,permeable membranes,and gas sensors.The literature review shows that the field of solid oxide materials and related electro-chemical cells has a significant level of research engagement,with over 8,000 publications published since 2020.The manual analysis of such a large volume of material is challenging.However,by examining the review articles,it is possible to identify key patterns,recent achievements,prospects,and remaining obstacles.To perform such an analysis,the present article provides,for the first time,a comprehensive summary of previous review publications that have been published since 2020,with a special focus on solid oxide materials and electrochemical systems.Thus,this study provides an important reference for researchers specializing in the fields of solid state ionics,high-temperature electrochemistry,and energyconversiontechnologies. 展开更多
关键词 SOFCS SOECs PCFCS electrochemistry Energy conversion Hydrogen energy Carbon neutrality
在线阅读 下载PDF
In-situ construction of grass-like hybrid architecture responsible for extraordinary corrosion performance: Experimental and theoretical approach 被引量:1
18
作者 T.Suhartono F.Hazmatulhaq +3 位作者 Y.Sheng A.Chaouiki M.P.Kamil Y.G.Ko 《Nano Materials Science》 EI CAS CSCD 2024年第1期44-59,共16页
Despite the engineering potential by the co-existence of inorganic and organic substances to protect vulnerable metallic materials from corrosive environments,both their interaction and in-situ formation mechanism to ... Despite the engineering potential by the co-existence of inorganic and organic substances to protect vulnerable metallic materials from corrosive environments,both their interaction and in-situ formation mechanism to induce the nature-inspired composite remained less understood.The present work used three distinctive mercaptobenzazole(MB)compounds working as corrosion inhibitors,such as 2-mercaptobenzoxazole(MBO),2-mercaptobenzothiazole(MBT),and 2-mercaptobenzimidazole(MBI)in a bid to understand how the geometrical structure arising from O,S,and N atoms affected the interaction toward inorganic layer.MB compounds that were used here to control the corrosion kinetics would be interacted readily with the pre-existing MgO layer fabricated by plasma electrolysis.This phenomenon triggered the nucleation of the root network since MB compounds were seen to be adsorbed actively on the defective surface through the active sites in MB compound.Then,the molecule with twin donor atoms adjacent to the mercapto-sites affected the facile growth of the grass-like structures with‘uniform’distribution via molecular self-assembly,which showed better corrosion performance than those with having dissimilar donor atoms with the inhibition efficiency(η)of 97%approximately.The formation mechanism underlying nucleation and growth behavior of MB molecule was discussed concerning the theoretical calculation of density functional theory. 展开更多
关键词 Nature-inspired composite Organic-inorganic interaction Corrosion inhibitor Density functional theory electrochemistry
在线阅读 下载PDF
Uncovering the electrooxidation behavior of 5-hydroxymethylfurfural on Ni/Co electrodes
19
作者 Shilin Fan Bin Zhu +5 位作者 Xiao Yu Yang Gao Weiping Xie Yong Yang Jian Zhang Chunlin Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期1-7,共7页
Biomass,derived from plant photosynthesis that captures carbon dioxide to form carbohydrates,offers vast renewable reserves.The electrooxidation of biomass,coupled with the hydrogen evolution reaction,enables the simu... Biomass,derived from plant photosynthesis that captures carbon dioxide to form carbohydrates,offers vast renewable reserves.The electrooxidation of biomass,coupled with the hydrogen evolution reaction,enables the simultaneous production of biomass-based plastic monomers and green hydrogen,attracting significant scholarly interest.However,ambiguity remains regarding the adsorption mechanism at the catalyst surface(Langmuir-Hinshelwood or Eley-Rideal)and the adsorbed substrate groups.To address this,we prepared a Ni/Co electrode for the electrooxidation of 5-hydroxymethylfurfural(HMF)into 2,5-furandicarboxylic acid(FDCA)through a corrosion reaction and electro-reduction pathway.HMF conversion reached 100.00%,FDCA yield reached 96.82%,and Faradic efficiency(FE)reached 92.14%.Meaningfully,utilizing in-situ spectroscopy and electrochemical methods,this work provided valuable insights into active sites and catalyst surface adsorption. 展开更多
关键词 ELECTROCATALYSIS electrochemistry 2 5-Furandicarboxylicacid 5-HYDROXYMETHYLFURFURAL Biomass
在线阅读 下载PDF
Electrochemical reconstruction of non-noble metal-based heterostructure nanorod arrays electrodes for highly stable anion exchange membrane seawater electrolysis
20
作者 Jingchen Na Hongmei Yu +7 位作者 Senyuan Jia Jun Chi Kaiqiu Lv Tongzhou Li Yun Zhao Yutong Zhao Haitao Zhang Zhigang Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期370-382,共13页
Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,par... Direct seawater electrolysis for hydrogen production has been regarded as a viable route to utilize surplus renewable energy and address the climate crisis.However,the harsh electrochemical environment of seawater,particularly the presence of aggressive Cl^(-),has been proven to be prone to parasitic chloride ion oxidation and corrosion reactions,thus restricting seawater electrolyzer lifetime.Herein,hierarchical structure(Ni,Fe)O(OH)@NiCoS nanorod arrays(NAs)catalysts with heterointerfaces and localized oxygen vacancies were synthesized at nickel foam substrates via the combination of hydrothermal and annealing methods to boost seawater dissociation.The hiera rchical nanostructure of NiCoS NAs enhanced electrode charge transfer rate and active surface area to accelerate oxygen evolution reaction(OER)and generated sulfate gradient layers to repulsive aggressive Cl^(-).The fabricated heterostructure and vacancies of(Ni,Fe)O(OH)tuned catalyst electronic structure into an electrophilic state to enhance the binding affinity of hydroxyl intermediates and facilitate the structural transformation into amorphousγ-NiFeOOH for promoting OER.Furthermore,through operando electrochemistry techniques,we found that theγ-NiFeOOH possessing an unsaturated coordination environment and lattice-oxygen-participated OER mechanism can minimize electrode Cl^(-)corrosion enabled by stabilizing the adsorption of OH*intermediates,making it one of the best OER catalysts in the seawater medium reported to date.Consequently,these catalysts can deliver current densities of 100 and 500 mA cm-2for boosting OER at minimal overpotentials of 245and 316 mV,respectively,and thus prevent chloride ion oxidation simultaneously.Impressively,a highly stable anion exchange membrane(AEM)seawater electrolyzer based on the non-noble metal heterostructure electrodes reached a record low degradation rate under 100μV h-1at constant industrial current densities of 400 and 600 mA cm-2over 300 h,which exhibits a promising future for the nonprecious and stable AEMWE in the direct seawater electrolysis industry. 展开更多
关键词 Direct seawater electrolysis Anion exchange membrane water ELECTROLYSIS Oxygen evolution reaction Oxygen vacancies Operando electrochemistry techniques
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部