To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individua...To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.展开更多
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th...A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP.展开更多
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat...A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.展开更多
A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,mu...A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,multi-scale variation and gradient-based diversity was modeled.Because the immune cloning operator was derived from a stimulation and suppression effect between antibodies and antigens,a sigmoid model that can clearly describe clonal proliferation was proposed.In addition,with the introduction of multiple populations and multi-scale variation,the algorithm can well maintain the population diversity during the dynamic searching process.Unlike traditional artificial immune algorithms,which require randomly generated cells added to the current population to explore its fitness landscape,AIDE uses a gradient-based diversity operator to speed up the optimization in the dynamic environments.Several reported algorithms were compared with AIDE by using Moving Peaks Benchmarks.Preliminary experiments show that AIDE can maintain high population diversity during the search process,simultaneously can speed up the optimization.Thus,AIDE is useful for the optimization of dynamic environments.展开更多
A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which m...A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.展开更多
In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts mor...In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts more and more attention in recent years.In this paper a new multi-population and diffusion UMDA(MDUMDA) is proposed for dynamic multimodal problems.The multi-population approach is used to locate multiple local optima which are useful to find the global optimal solution quickly to dynamic multimodal problems.The diffusion model is used to increase the diversity in a guided fashion,which makes the neighbor individuals of previous optimal solutions move gradually from the previous optimal solutions and enlarge the search space.This approach uses both the information of current population and the part history information of the optimal solutions.Finally experimental studies on the moving peaks benchmark are carried out to evaluate the proposed algorithm and compare the performance of MDUMDA and multi-population quantum swarm optimization(MQSO) from the literature.The experimental results show that the MDUMDA is effective for the function with moving optimum and can adapt to the dynamic environments rapidly.展开更多
The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. ...The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. In order to follow desired path, a driver model is developed to enhance closed loop driver/vehicle model. Then, linear quadratic regulator(LQR) controller is developed which regulates direct yaw moment and corrective steering angle on wheels. Particle swam optimization(PSO) method is utilized to optimize the LQR controller for various dynamic conditions. Simulation results indicate that, over various maneuvers, side slip angle and lateral acceleration can be reduced by 10% and 15%, respectively, which sustain the vehicle stable. Also, anti-lock brake system is designed for longitudinal dynamics of vehicle to achieve desired slip during braking and accelerating. Proposed comprehensive controller demonstrates that vehicle steerability can increase by about 15% during severe braking by preventing wheel from locking and reducing stopping distance.展开更多
Transformers are key components in substations,and their maintenance scheme is very important.Optimizing the transformer maintenance scheme can enhance substation reliability and lower maintenance cost.Current resolut...Transformers are key components in substations,and their maintenance scheme is very important.Optimizing the transformer maintenance scheme can enhance substation reliability and lower maintenance cost.Current resolutions focus on device state evaluation and fault detection,which is ex-post method.However,this paper proposes a LS-SVM algorithm based on deficiencies tree analysis to predict deficiencies in future under certain maintenance scheme,then choose the best maintenance scheme.展开更多
基金Project(2013CB733600) supported by the National Basic Research Program of ChinaProject(21176073) supported by the National Natural Science Foundation of China+2 种基金Project(20090074110005) supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-09-0346) supported by Program for New Century Excellent Talents in University of ChinaProject(09SG29) supported by "Shu Guang", China
文摘To solve dynamic optimization problem of chemical process (CPDOP), a hybrid differential evolution algorithm, which is integrated with Alopex and named as Alopex-DE, was proposed. In Alopex-DE, each original individual has its own symbiotic individual, which consists of control parameters. Differential evolution operator is applied for the original individuals to search the global optimization solution. Alopex algorithm is used to co-evolve the symbiotic individuals during the original individual evolution and enhance the fitness of the original individuals. Thus, control parameters are self-adaptively adjusted by Alopex to obtain the real-time optimum values for the original population. To illustrate the whole performance of Alopex-DE, several varietal DEs were applied to optimize 13 benchmark functions. The results show that the whole performance of Alopex-DE is the best. Further, Alopex-DE was applied to solve 4 typical CPDOPs, and the effect of the discrete time degree on the optimization solution was analyzed. The satisfactory result is obtained.
基金supported by the National Natural Science Foundation of China (60374063)the Natural Science Basic Research Plan Project in Shaanxi Province (2006A12)+1 种基金the Science and Technology Research Project of the Educational Department in Shaanxi Province (07JK180)the Emphasis Research Plan Project of Baoji University of Arts and Science (ZK0840)
文摘A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP.
基金Project(2013CB733605)supported by the National Basic Research Program of ChinaProject(21176073)supported by the National Natural Science Foundation of China
文摘A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.
基金Project(60625302) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(2009CB320603) supported by the National Basic Research Program of China+5 种基金Projects(10dz1121900,10JC1403400) supported by Shanghai Key Technologies R & D ProgramProject supported by the Fundamental Research Funds for the Central Universities in ChinaProject(200802511011) supported by the New Teacher Program of Specialized Research Fund for the Doctoral Program of Higher Education in ChinaProject(Y1090548) supported by Zhejiang Provincial Natural Science Fund,ChinaProject(2011C21077) supported by Zhejiang Technology Programme,ChinaProject(2011A610173) supported by Ningbo Natural Science Fund,China
文摘A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,multi-scale variation and gradient-based diversity was modeled.Because the immune cloning operator was derived from a stimulation and suppression effect between antibodies and antigens,a sigmoid model that can clearly describe clonal proliferation was proposed.In addition,with the introduction of multiple populations and multi-scale variation,the algorithm can well maintain the population diversity during the dynamic searching process.Unlike traditional artificial immune algorithms,which require randomly generated cells added to the current population to explore its fitness landscape,AIDE uses a gradient-based diversity operator to speed up the optimization in the dynamic environments.Several reported algorithms were compared with AIDE by using Moving Peaks Benchmarks.Preliminary experiments show that AIDE can maintain high population diversity during the search process,simultaneously can speed up the optimization.Thus,AIDE is useful for the optimization of dynamic environments.
基金Project(2009AA04Z216) supported in part by the National High Technology Research and Development Program of ChinaProject(2009ZX04013-011) supported by the National Science and Technology Major Program of ChinaProject(20092302120068) supported by the Doctoral Program of Higher Education of China
文摘A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.
基金supported by the National Natural Science Foundation of China (6087309960775013)
文摘In dynamic environments,it is important to track changing optimal solutions over time.Univariate marginal distribution algorithm(UMDA) which is a class algorithm of estimation of distribution algorithms attracts more and more attention in recent years.In this paper a new multi-population and diffusion UMDA(MDUMDA) is proposed for dynamic multimodal problems.The multi-population approach is used to locate multiple local optima which are useful to find the global optimal solution quickly to dynamic multimodal problems.The diffusion model is used to increase the diversity in a guided fashion,which makes the neighbor individuals of previous optimal solutions move gradually from the previous optimal solutions and enlarge the search space.This approach uses both the information of current population and the part history information of the optimal solutions.Finally experimental studies on the moving peaks benchmark are carried out to evaluate the proposed algorithm and compare the performance of MDUMDA and multi-population quantum swarm optimization(MQSO) from the literature.The experimental results show that the MDUMDA is effective for the function with moving optimum and can adapt to the dynamic environments rapidly.
文摘The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. In order to follow desired path, a driver model is developed to enhance closed loop driver/vehicle model. Then, linear quadratic regulator(LQR) controller is developed which regulates direct yaw moment and corrective steering angle on wheels. Particle swam optimization(PSO) method is utilized to optimize the LQR controller for various dynamic conditions. Simulation results indicate that, over various maneuvers, side slip angle and lateral acceleration can be reduced by 10% and 15%, respectively, which sustain the vehicle stable. Also, anti-lock brake system is designed for longitudinal dynamics of vehicle to achieve desired slip during braking and accelerating. Proposed comprehensive controller demonstrates that vehicle steerability can increase by about 15% during severe braking by preventing wheel from locking and reducing stopping distance.
文摘Transformers are key components in substations,and their maintenance scheme is very important.Optimizing the transformer maintenance scheme can enhance substation reliability and lower maintenance cost.Current resolutions focus on device state evaluation and fault detection,which is ex-post method.However,this paper proposes a LS-SVM algorithm based on deficiencies tree analysis to predict deficiencies in future under certain maintenance scheme,then choose the best maintenance scheme.