Since distribution sector is inherent into high amount of failures, distribution companies (DISCOs) are responsible of attaining an acceptable value for the reliability indices and otherwise they will face up to compl...Since distribution sector is inherent into high amount of failures, distribution companies (DISCOs) are responsible of attaining an acceptable value for the reliability indices and otherwise they will face up to complaints. So they are usually obligated by regulators to invest on reliability improvement of network. But this investment on reliability is usually from the DISCO’s viewpoint and is also irrespective of customer satisfaction level. In other words, customers are not at the same level of sensitivity to interruptions but DISCO improves the reliability of network without considering the differences in importance degree of loads and their level of reliability requirement. On the other hand DISCOs attempt to reduce their investment costs as much as possible. This paper introduces a novel approach in the field of joint switch placement that can reduce the switch cost from the perspective of asset management policies. To this end, two switch placement plannings in different types of strategies are performed to compare their results. Firstly as witch placement is performed based on reducing the total energy not supplied (ENS) of the system. Then by revising the strategy, a fuzzy switch placement is performed from the DISCO’s point of view which just considers the total ENS of load points most sensitive to interruptions known as important or critical loads. Furthermore, by meeting the related constraints, the reliability of low sensitive customers is disregarded. This is a load importance based planning which can result in switch cost reduction relative to the amount achieved in previous strategy and implies the management of risks associated with reliability and respective constraint. Fuzzy method and new switching mechanism in fuzzy environment of network are implemented to modeling and controlling the risks associated to ENS of critical loads and also the ENS of system.展开更多
Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s in...Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s include system design, integration of object-oriented technology, data distri bution, collaborative and distributed manufacturing working environment, secur ity, and web-based integration. However, there are limitations on their rese arches. In particular, they cannot cater for PDM in distributed manufacturing e nvironment. This is especially true in South China, where many Hong Kong (HK) ma nufacturers have moved their production plants to different locations in Pearl R iver Delta for cost reduction. However, they retain their main offices in HK. Development of PDM system is inherently complex. Product related data cover prod uct name, product part number (product identification), drawings, material speci fications, dimension requirement, quality specification, test result, log size, production schedules, product data version and date of release, special tooling (e.g. jig and fixture), mould design, project engineering in charge, cost spread sheets, while process data includes engineering release, engineering change info rmation management, and other workflow related to the process information. Accor ding to Cornelissen et al., the contemporary PDM system should contains manageme nt functions in structure, retrieval, release, change, and workflow. In system design, development and implementation, a formal specification is nece ssary. However, there is no formal representation model for PDM system. Theref ore a graphical representation model is constructed to express the various scena rios of interactions between users and the PDM system. Statechart is then used to model the operations of PDM system, Fig.1. Statechart model bridges the curr ent gap between requirements, scenarios, and the initial design specifications o f PDM system. After properly analyzing the PDM system, a new distributed PDM (DPDM) system is proposed. Both graphical representation and statechart models are constructed f or the new DPDM system, Fig.2. New product data of DPDM and new system function s are then investigated to support product information flow in the new distribut ed environment. It is found that statecharts allow formal representations to capture the informa tion and control flows of both PDM and DPDM. In particular, statechart offers a dditional expressive power, when compared to conventional state transition diagr am, in terms of hierarchy, concurrency, history, and timing for DPDM behavioral modeling.展开更多
文摘Since distribution sector is inherent into high amount of failures, distribution companies (DISCOs) are responsible of attaining an acceptable value for the reliability indices and otherwise they will face up to complaints. So they are usually obligated by regulators to invest on reliability improvement of network. But this investment on reliability is usually from the DISCO’s viewpoint and is also irrespective of customer satisfaction level. In other words, customers are not at the same level of sensitivity to interruptions but DISCO improves the reliability of network without considering the differences in importance degree of loads and their level of reliability requirement. On the other hand DISCOs attempt to reduce their investment costs as much as possible. This paper introduces a novel approach in the field of joint switch placement that can reduce the switch cost from the perspective of asset management policies. To this end, two switch placement plannings in different types of strategies are performed to compare their results. Firstly as witch placement is performed based on reducing the total energy not supplied (ENS) of the system. Then by revising the strategy, a fuzzy switch placement is performed from the DISCO’s point of view which just considers the total ENS of load points most sensitive to interruptions known as important or critical loads. Furthermore, by meeting the related constraints, the reliability of low sensitive customers is disregarded. This is a load importance based planning which can result in switch cost reduction relative to the amount achieved in previous strategy and implies the management of risks associated with reliability and respective constraint. Fuzzy method and new switching mechanism in fuzzy environment of network are implemented to modeling and controlling the risks associated to ENS of critical loads and also the ENS of system.
文摘Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s include system design, integration of object-oriented technology, data distri bution, collaborative and distributed manufacturing working environment, secur ity, and web-based integration. However, there are limitations on their rese arches. In particular, they cannot cater for PDM in distributed manufacturing e nvironment. This is especially true in South China, where many Hong Kong (HK) ma nufacturers have moved their production plants to different locations in Pearl R iver Delta for cost reduction. However, they retain their main offices in HK. Development of PDM system is inherently complex. Product related data cover prod uct name, product part number (product identification), drawings, material speci fications, dimension requirement, quality specification, test result, log size, production schedules, product data version and date of release, special tooling (e.g. jig and fixture), mould design, project engineering in charge, cost spread sheets, while process data includes engineering release, engineering change info rmation management, and other workflow related to the process information. Accor ding to Cornelissen et al., the contemporary PDM system should contains manageme nt functions in structure, retrieval, release, change, and workflow. In system design, development and implementation, a formal specification is nece ssary. However, there is no formal representation model for PDM system. Theref ore a graphical representation model is constructed to express the various scena rios of interactions between users and the PDM system. Statechart is then used to model the operations of PDM system, Fig.1. Statechart model bridges the curr ent gap between requirements, scenarios, and the initial design specifications o f PDM system. After properly analyzing the PDM system, a new distributed PDM (DPDM) system is proposed. Both graphical representation and statechart models are constructed f or the new DPDM system, Fig.2. New product data of DPDM and new system function s are then investigated to support product information flow in the new distribut ed environment. It is found that statecharts allow formal representations to capture the informa tion and control flows of both PDM and DPDM. In particular, statechart offers a dditional expressive power, when compared to conventional state transition diagr am, in terms of hierarchy, concurrency, history, and timing for DPDM behavioral modeling.