Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization proces...Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.展开更多
Growth of high-quality Nb_(3)Sn thin films for superconducting radiofrequency(SRF)applications using the vapor diffusion method requires a uniform distribution of tin nuclei on the niobium(Nb)surface.This study examin...Growth of high-quality Nb_(3)Sn thin films for superconducting radiofrequency(SRF)applications using the vapor diffusion method requires a uniform distribution of tin nuclei on the niobium(Nb)surface.This study examines the mechanism underlying the observed non-uniform distribution of tin nuclei with tin chloride SnCl_(2).Electron backscatter diffraction(EBSD)analysis was used to examine the correlation between the nucleation behavior and orientation of niobium grains in the substrate.The findings of the density functional theory(DFT)simulation are in good agreement with the experimental results,showing that the non-uniform distribution of tin nuclei is the result of the adsorption energy of SnCl_(2)molecules by varied niobium grain orientations.Further analysis indicated that the surface roughness and grain size of niobium also played significant roles in the nucleation behavior.This study provides valuable insights into enhancing the surface pretreatment of niobium substrates during the growth of Nb_(3)Sn thin films using the vapor diffusion method.展开更多
Atmospheric particle adsorption on insulator surfaces,coupled with humid environments,significantly affects contamination flashover,necessitating a clear understanding of the electric field distribution on insulator s...Atmospheric particle adsorption on insulator surfaces,coupled with humid environments,significantly affects contamination flashover,necessitating a clear understanding of the electric field distribution on insulator surfaces with adsorbed particles.This is crucial for accurately assessing insulator safety and informing critical decision-making.Although previous research has demonstrated that particle arrangement significantly influences the electric field distribution around transmission lines,an in-depth analysis of its effects on insulator surfaces remains lacking.To address this gap,this study establishes a composite insulator model to examine how three types of spherical contamination layers affect the electric field distribution on insulator surfaces under varying environmental conditions.The results reveal that in dry environments,the electric field strength at the apex of single-particle contamination layers increases with the particle size and relative permittivity.For the double-particle contamination layers,the electric field intensity on the insulator surface decreases as the particle spacing increases,and larger particles are more likely to attract smaller charged particles.For triple-particle contamination layers arranged in a triangular pattern,the maximum surface field strength is nearly double that of the chain-arranged particles.Furthermore,within the chain-arranged triple-particle contamination layers,a large-small-large size arrangement has a more pronounced impact on the surface electric field than a small-large-small size arrangement.In humid environments,the surface electric field strength of insulators decreases with increasing contamination levels.These findings are of significant theoretical and practical importance for ensuring the safe operation of power systems.展开更多
Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,th...Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,the public network communication system is easily damaged after disasters,causing the operation center to lose control of the distribution network.In this paper,we considered using satellites to transmit the distribution network data and focus on the resource scheduling problem of the satellite emergency communication system for the distribution network.Specifically,this paper first formulates the satellite beam-pointing problem and the accesschannel joint resource allocation problem.Then,this paper proposes the Priority-based Beam-pointing and Access-Channel joint optimization algorithm(PBAC),which uses convex optimization theory to solve the satellite beam pointing problem,and adopts the block coordinate descent method,Lagrangian dual method,and a greedy algorithm to solve the access-channel joint resource allocation problem,thereby obtaining the optimal resource scheduling scheme for the satellite network.Finally,this paper conducts comparative experiments with existing methods to verify the effec-tiveness of the proposed methods.The results show that the total weighted transmitted data of the proposed algorithm is increased by about 19.29∼26.29%compared with other algorithms.展开更多
Capturing ultrafast dynamics over a large momentum space is critical for revealing the relationship between the electronic and structural modulations in quantum materials.Here,by performing time-and angle-resolved pho...Capturing ultrafast dynamics over a large momentum space is critical for revealing the relationship between the electronic and structural modulations in quantum materials.Here,by performing time-and angle-resolved photoemission spectroscopy measurements at the Synergetic Extreme Condition User Facility(SECUF)equipped with an extreme ultraviolet light source,we reveal the ultrafast dynamics of a charge-density wave(CDW)material,1T-TiSe_(2),upon photoexcitation.Pump-induced CDW melting is revealed from two aspects:gap closing of the CDW at the Brillouin zone(BZ)center and weakening of the CDW folded band at the BZ boundary.By comparing the transient electronic structure and spectral weight over a large momentum space,we further reveal the carrier redistribution involving the excitation of electrons from theГpoint to the M point.This study provides a comprehensive picture of the physics and ultrafast dynamics of a CDW material across the entire BZ.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature...Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature components of the quantum states.Hence,high-speed random number generators are required to satisfy this demand,which is difficult to implement in practical applications.CVQSDC with discrete modulation(DM),correspondingly,employs a finite number of quantum states to achieve encoding,which can circumvent the shortcomings of the GM scheme.Based on the advantages of DM,the issue of attaining the most optimal secrecy capacity and communication distance remains to be resolved.Here,we propose a CVQSDC protocol based on N-symbol amplitude phase shift keying(N-APSK),which exploits the Boltzmann-Maxwell distribution assisted probability shaping technique.In comparison with the uniform distribution,according to 32-APSK CVQSDC,the proposed scheme extends the communication distance by about 38%,while obtaining a higher secrecy capacity at the same communication distance.Furthermore,increasing the value of N will concurrently increase the quantity of rings in the constellation,thereby facilitating enhancements of communication distance.This work incorporates the modulation approaches prevalently employed in classical communication into the realm of quantum communication,attaining gratifying advancements in communication distance and secrecy capacity,and concurrently facilitating the integrated development of quantum communication and classical communication.展开更多
In the process of quantum key distribution(QKD), the communicating parties need to randomly determine quantum states and measurement bases. To ensure the security of key distribution, we aim to use true random sequenc...In the process of quantum key distribution(QKD), the communicating parties need to randomly determine quantum states and measurement bases. To ensure the security of key distribution, we aim to use true random sequences generated by true random number generators as the source of randomness. In practical systems, due to the difficulty of obtaining true random numbers, pseudo-random number generators are used instead. Although the random numbers generated by pseudorandom number generators are statistically random, meeting the requirements of uniform distribution and independence,they rely on an initial seed to generate corresponding pseudo-random sequences. Attackers may predict future elements from the initial elements of the random sequence, posing a security risk to quantum key distribution. This paper analyzes the problems existing in current pseudo-random number generators and proposes corresponding attack methods and applicable scenarios based on the vulnerabilities in the pseudo-random sequence generation process. Under certain conditions, it is possible to obtain the keys of the communicating parties with very low error rates, thus effectively attacking the quantum key system. This paper presents new requirements for the use of random numbers in quantum key systems, which can effectively guide the security evaluation of quantum key distribution protocols.展开更多
Reference-frame-independent quantum key distribution(RFI-QKD) can avoid real-time calibration operation of reference frames and improve the efficiency of the communication process. However, due to imperfections of opt...Reference-frame-independent quantum key distribution(RFI-QKD) can avoid real-time calibration operation of reference frames and improve the efficiency of the communication process. However, due to imperfections of optical devices,there will inevitably exist intensity fluctuations in the source side of the QKD system, which will affect the final secure key rate. To reduce the influence of intensity fluctuations, an improved 3-intensity RFI-QKD scheme is proposed in this paper.After considering statistical fluctuations and implementing global parameter optimization, we conduct corresponding simulation analysis. The results show that our present work can present both higher key rate and a farther transmission distance than the standard method.展开更多
The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut...The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.展开更多
Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thi...Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.展开更多
A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long process...A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long processing times in traditional offline position reconstruction methods,this paper proposes a field programmable gate array based online position reconstruction method utilizing the micro-time projection chamber principle.This method encapsulates key technical aspects:a self-adaptive serial link technique built upon the dynamical adjustment of the delay chain length,fast sorting,a coordinate-matching technique based on the mapping between signal timestamps and random access memory(RAM)addresses,and a precise start point-merging technique utilizing a circular combined RAM.The performance test of the selfadaptive serial link shows that the bit error rate of the link is better than 10-12 at a confidence level of 99%,ensuring reliable data transmission.The experiment utilizing the readout electronics and Micromegas detector shows a spatial resolution of approximately 1.4 mm,surpassing the current method’s resolution level of 5 mm.The beam experiment confirms that the readout electronics system can obtain the flux spatial distribution of neutron beams online,thus validating the feasibility of the position reconstruction method.The online position reconstruction method avoids traditional methods,such as bubble sorting and traversal searching,simplifies the design of the logic firmware,and reduces the time complexity from O(n2)to O(n).This study contributes to the advancement in measuring neutron beam flux for BNCT.展开更多
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas...P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.展开更多
Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbo...Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.展开更多
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
The reverse J-shaped diameter distribution is considered an inherent attribute of natural forests,cru-cial for forest resource utilization and community stability.However,in karst regions,intense habitat heterogeneity...The reverse J-shaped diameter distribution is considered an inherent attribute of natural forests,cru-cial for forest resource utilization and community stability.However,in karst regions,intense habitat heterogeneity might alter species composition,spatial distribution,growth,biomass allocation,and mortality processes,yet its impact on diameter structure remains unclear.A fixed plot of 200 m×110 m was established in the Nanpan River Basin,Southwest China,within an old-growth oak forest(>300 years old),and the influence of site substrates(i.e.,rock and soil),topographic factors,sample area,and orientation on diameter distribution was analyzed.Trees on both rock and soil exhibited a reverse-J shape,quantifiable Project funding:This work was supported by the National Natural Science Foundation of China(32060340 and 31400542),the Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi(22-035-130-01).through the Weibull function.The substrates had a similar density,approximately 2100 plants/ha.However,the average and range of diameter of trees on rock were smaller than those on soil,suggesting that rock constrains tree growth.The diameter distribution of trees across microtopography also displayed a reverse-J shape.Yet,higher elevations and sunny slopes showed a greater curvature of diameter classes compared to lower elevations and shady slopes,indicating habitat preferences in karst trees.Sample area and orientation had minimal effects on diameter class curve that reached stability when the plot size was 6000 m2.These results suggest that the reverse J-shaped diameter distribution prevails at small scales in karst old-growth forests,encompassing multiple curvatures and spanning forest ecosystems.展开更多
Aqueous zinc metal batteries (AZMBs) are hindered by uncontrolled dendrites and side reactions during commercialization,despite their advantages of safety and high capacity density.Herein,we propose the electrical fee...Aqueous zinc metal batteries (AZMBs) are hindered by uncontrolled dendrites and side reactions during commercialization,despite their advantages of safety and high capacity density.Herein,we propose the electrical feedback strategy to restrain the Zn dendrites resulting from the"tip effect"and optimize interfacial Zn^(2+)distribution to accelerate electrodeposition kinetics by using the lithium niobate (LNO) layer.Specifically,at the bumps of the zinc anode,the ferroelectric LNO is polarized by the locally strong electric field,which in turn counteracts the"tip effect".In this way,the dynamic polarization of LNO can repair the uneven tip electric field to achieve uniform and flat zinc deposition.In addition,owing to the interaction between Nb and Zn^(2+),a higher concentration of Zn^(2+)near the zincophilic LNO@Zn surface is obtained for the rapid electrochemical reaction kinetics of plating.Considering the aforementioned advantages,the LNO@Zn anode harvests stable cycling over 1200 h at 10 mA cm^(-2)with a superior cumulative capacity of 5800 mAh cm^(-2).Assembled with the a-MnO_(2) cathode,the full cell using LNO@Zn anode exhibits the slower capacity decay (0.054%per cycle) during 1000 cycles.This strategy provides a perspective for stabilizing zinc metal anodes through dynamic electrical response and interfacial ion redistribution effect.展开更多
Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Bas...Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Basin of China,we presented an integrated workflow to investigate how(1)proppant placement in induced fracture and(2)non-linear flow in reservoir matrix would affect well productivity and fluid flow in the reservoir.Compared with our research before(Yue et al.,2020),here we extended this study into the development of multi-stage fractured horizontal wells(MFHWs)with large-scale complicated fracture geometry.The integrated workflow is based on the finite element method and consists of simulation models for proppant-laden fluid flow,fracture flow,and non-linear seepage flow,respectively.Simulation results indicate that the distribution of proppant inside the induced cracks significantly affects the productivity of the MFHW.When we assign an idealized proppant distribution instead of the real distribution,there will be an overestimation of 44.98%in daily oil rate and 30.63%in cumulative oil production after continuous development of 1000 days.Besides,threshold pressure gradient(TPG)also significantly affects the well performance in tight oil reservoirs.If we simply apply linear Darcy’s law to the reservoir matrix,the overall cumulative oil production can be overrated by 77%after 1000 days of development.In general,this research provides new insights into the development of tight oil reservoirs with TPG and meanwhile reveals the significance of proppant distribution and non-linear fluid flow in the production scenario design.展开更多
The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation f...The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation fields of 85 kg cylindrical and fan-shaped fuel are investigated by experiments and numerical simulations.A dynamic model of the whole process for fuel dispersal and detonation is built.The concentration distribution of fuel is used as the initial condition to calculate the detonation stage,thus solving the initial value problem of detonation field.The phase and component changes of fuel cloud at different locations are compared.The fuel cloud is divided into directions of 0°,90°,135°and 180°.The results show that the maximum cloud radius is 20.94 m in 135°and the minimum is 12.04 m in 0°.The diameter of the detonation fireball is 53.6 m,and the peak temperature is 3455 K.The highest peak overpressure is 3.44 MPa in 0°and the lowest is 2.97 MPa in 135°.The proportion of liquid phase in 0°is22.90%,and the fuel loss is 11.8% and 9% higher than that in 135°and cylindrical charge,respectively.The stable propagation distance of blast wave in 135°is 42.50% longer than 0°and 28.37% longer than cylindrical charge.展开更多
A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the...A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the kinetic theory of rarefied gases, we construct a two-group kinetic model for the evolution of wealth distribution. Under the continuous trading limit, the Fokker–Planck equation is derived and its steady-state solution is obtained. For the non-Maxwellian collision kernel, we find a suitable redistribution operator to match the taxation. Our results illustrate that taxation and redistribution have the property to change the Pareto index.展开更多
基金supported by National Natural Science Foundation of China(62104082)Guangdong Basic and Applied Basic Research Foundation(2022A1515010746,2022A1515011228,and 2022B1515120006)the Science and Technology Program of Guangzhou(202201010458).
文摘Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air.
基金supported by the National Natural Science Foundation of China(No.12175283)Youth Innovation Promotion Association of Chinese Academy of Sciences(2020410)Advanced Energy Science and Technology Guangdong Laboratory(HND20TDSPCD,HND22PTDZD).
文摘Growth of high-quality Nb_(3)Sn thin films for superconducting radiofrequency(SRF)applications using the vapor diffusion method requires a uniform distribution of tin nuclei on the niobium(Nb)surface.This study examines the mechanism underlying the observed non-uniform distribution of tin nuclei with tin chloride SnCl_(2).Electron backscatter diffraction(EBSD)analysis was used to examine the correlation between the nucleation behavior and orientation of niobium grains in the substrate.The findings of the density functional theory(DFT)simulation are in good agreement with the experimental results,showing that the non-uniform distribution of tin nuclei is the result of the adsorption energy of SnCl_(2)molecules by varied niobium grain orientations.Further analysis indicated that the surface roughness and grain size of niobium also played significant roles in the nucleation behavior.This study provides valuable insights into enhancing the surface pretreatment of niobium substrates during the growth of Nb_(3)Sn thin films using the vapor diffusion method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12064034 and 11562017)the Leading Talents Program of Science and Technology Innovation in Ningxia Hui Autonomous Region,China(Grant No.2020GKLRLX08)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(Grant No.2024AAC05040)。
文摘Atmospheric particle adsorption on insulator surfaces,coupled with humid environments,significantly affects contamination flashover,necessitating a clear understanding of the electric field distribution on insulator surfaces with adsorbed particles.This is crucial for accurately assessing insulator safety and informing critical decision-making.Although previous research has demonstrated that particle arrangement significantly influences the electric field distribution around transmission lines,an in-depth analysis of its effects on insulator surfaces remains lacking.To address this gap,this study establishes a composite insulator model to examine how three types of spherical contamination layers affect the electric field distribution on insulator surfaces under varying environmental conditions.The results reveal that in dry environments,the electric field strength at the apex of single-particle contamination layers increases with the particle size and relative permittivity.For the double-particle contamination layers,the electric field intensity on the insulator surface decreases as the particle spacing increases,and larger particles are more likely to attract smaller charged particles.For triple-particle contamination layers arranged in a triangular pattern,the maximum surface field strength is nearly double that of the chain-arranged particles.Furthermore,within the chain-arranged triple-particle contamination layers,a large-small-large size arrangement has a more pronounced impact on the surface electric field than a small-large-small size arrangement.In humid environments,the surface electric field strength of insulators decreases with increasing contamination levels.These findings are of significant theoretical and practical importance for ensuring the safe operation of power systems.
基金supported by the Science and Technology Project of the State Grid Corporation of China(5400-202255158A-1-1-ZN).
文摘Frequent extreme disasters have led to frequent large-scale power outages in recent years.To quickly restore power,it is necessary to understand the damage information of the distribution network accurately.However,the public network communication system is easily damaged after disasters,causing the operation center to lose control of the distribution network.In this paper,we considered using satellites to transmit the distribution network data and focus on the resource scheduling problem of the satellite emergency communication system for the distribution network.Specifically,this paper first formulates the satellite beam-pointing problem and the accesschannel joint resource allocation problem.Then,this paper proposes the Priority-based Beam-pointing and Access-Channel joint optimization algorithm(PBAC),which uses convex optimization theory to solve the satellite beam pointing problem,and adopts the block coordinate descent method,Lagrangian dual method,and a greedy algorithm to solve the access-channel joint resource allocation problem,thereby obtaining the optimal resource scheduling scheme for the satellite network.Finally,this paper conducts comparative experiments with existing methods to verify the effec-tiveness of the proposed methods.The results show that the total weighted transmitted data of the proposed algorithm is increased by about 19.29∼26.29%compared with other algorithms.
基金supported by the Synergetic Extreme-Condition User Facility(SECUF)the National Key R&D Program of China(Grant Nos.2021YFA1400100,2020YFA0308800,and 2022YFA1604200)+2 种基金the National Natural Science Foundation of China(Grant Nos.12234011,92250305,52388201,11725418,and 11427903)supported by the China Postdoctoral Science Foundation(Grant Nos.2022M721886 and BX20230187)the Shuimu Tsinghua Scholar Program。
文摘Capturing ultrafast dynamics over a large momentum space is critical for revealing the relationship between the electronic and structural modulations in quantum materials.Here,by performing time-and angle-resolved photoemission spectroscopy measurements at the Synergetic Extreme Condition User Facility(SECUF)equipped with an extreme ultraviolet light source,we reveal the ultrafast dynamics of a charge-density wave(CDW)material,1T-TiSe_(2),upon photoexcitation.Pump-induced CDW melting is revealed from two aspects:gap closing of the CDW at the Brillouin zone(BZ)center and weakening of the CDW folded band at the BZ boundary.By comparing the transient electronic structure and spectral weight over a large momentum space,we further reveal the carrier redistribution involving the excitation of electrons from theГpoint to the M point.This study provides a comprehensive picture of the physics and ultrafast dynamics of a CDW material across the entire BZ.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071381 and 62301430)Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.23JSY014)+1 种基金Scientific Research Plan Project of Shaanxi Education Department Natural Science Special Project(Grant No.23JK0680)Young Talent Fund of Xi’an Association for Science and Technology(Grant No.959202313011)。
文摘Continuous-variable quantum secure direct communication(CVQSDC)with Gaussian modulation(GM)demands a considerable quantity of random numbers during the preparation process and encodes them separately on the quadrature components of the quantum states.Hence,high-speed random number generators are required to satisfy this demand,which is difficult to implement in practical applications.CVQSDC with discrete modulation(DM),correspondingly,employs a finite number of quantum states to achieve encoding,which can circumvent the shortcomings of the GM scheme.Based on the advantages of DM,the issue of attaining the most optimal secrecy capacity and communication distance remains to be resolved.Here,we propose a CVQSDC protocol based on N-symbol amplitude phase shift keying(N-APSK),which exploits the Boltzmann-Maxwell distribution assisted probability shaping technique.In comparison with the uniform distribution,according to 32-APSK CVQSDC,the proposed scheme extends the communication distance by about 38%,while obtaining a higher secrecy capacity at the same communication distance.Furthermore,increasing the value of N will concurrently increase the quantity of rings in the constellation,thereby facilitating enhancements of communication distance.This work incorporates the modulation approaches prevalently employed in classical communication into the realm of quantum communication,attaining gratifying advancements in communication distance and secrecy capacity,and concurrently facilitating the integrated development of quantum communication and classical communication.
文摘In the process of quantum key distribution(QKD), the communicating parties need to randomly determine quantum states and measurement bases. To ensure the security of key distribution, we aim to use true random sequences generated by true random number generators as the source of randomness. In practical systems, due to the difficulty of obtaining true random numbers, pseudo-random number generators are used instead. Although the random numbers generated by pseudorandom number generators are statistically random, meeting the requirements of uniform distribution and independence,they rely on an initial seed to generate corresponding pseudo-random sequences. Attackers may predict future elements from the initial elements of the random sequence, posing a security risk to quantum key distribution. This paper analyzes the problems existing in current pseudo-random number generators and proposes corresponding attack methods and applicable scenarios based on the vulnerabilities in the pseudo-random sequence generation process. Under certain conditions, it is possible to obtain the keys of the communicating parties with very low error rates, thus effectively attacking the quantum key system. This paper presents new requirements for the use of random numbers in quantum key systems, which can effectively guide the security evaluation of quantum key distribution protocols.
基金financial support from the Industrial Prospect and Key Core Technology Projects of Jiangsu Provincial Key R&D Program (Grant No. BE2022071)the Natural Science Foundation of Jiangsu Province (Grant No. BK20192001)+1 种基金the National Natural Science Foundation of China (Grant No. 12074194)the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX220954)。
文摘Reference-frame-independent quantum key distribution(RFI-QKD) can avoid real-time calibration operation of reference frames and improve the efficiency of the communication process. However, due to imperfections of optical devices,there will inevitably exist intensity fluctuations in the source side of the QKD system, which will affect the final secure key rate. To reduce the influence of intensity fluctuations, an improved 3-intensity RFI-QKD scheme is proposed in this paper.After considering statistical fluctuations and implementing global parameter optimization, we conduct corresponding simulation analysis. The results show that our present work can present both higher key rate and a farther transmission distance than the standard method.
文摘The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.
基金the National Natural Science Foundation of China(Nos.12375123,11975091,and 12305130)the Natural Science Foundation of Henan Province(No.242300421048)+1 种基金China Postdoctoral Science Foundation(No.2023M731016)Henan Postdoctoral Foundation(No.HN2022164).
文摘Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.
基金supported by the National Natural Science Foundation of China(No.12075237)。
文摘A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long processing times in traditional offline position reconstruction methods,this paper proposes a field programmable gate array based online position reconstruction method utilizing the micro-time projection chamber principle.This method encapsulates key technical aspects:a self-adaptive serial link technique built upon the dynamical adjustment of the delay chain length,fast sorting,a coordinate-matching technique based on the mapping between signal timestamps and random access memory(RAM)addresses,and a precise start point-merging technique utilizing a circular combined RAM.The performance test of the selfadaptive serial link shows that the bit error rate of the link is better than 10-12 at a confidence level of 99%,ensuring reliable data transmission.The experiment utilizing the readout electronics and Micromegas detector shows a spatial resolution of approximately 1.4 mm,surpassing the current method’s resolution level of 5 mm.The beam experiment confirms that the readout electronics system can obtain the flux spatial distribution of neutron beams online,thus validating the feasibility of the position reconstruction method.The online position reconstruction method avoids traditional methods,such as bubble sorting and traversal searching,simplifies the design of the logic firmware,and reduces the time complexity from O(n2)to O(n).This study contributes to the advancement in measuring neutron beam flux for BNCT.
基金supported by the National Natural Science Foundation of China (22169002)the Chongzuo Key Research and Development Program of China (20220603)the Counterpart Aid Project for Discipline Construction from Guangxi University(2023M02)
文摘P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.
基金Supported by the National Natural Science Foundation of China(42090022)。
文摘Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.
基金supported by the National Natural Science Foundation of China(32060340 and 31400542)the Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi(22-035-130-01).
文摘The reverse J-shaped diameter distribution is considered an inherent attribute of natural forests,cru-cial for forest resource utilization and community stability.However,in karst regions,intense habitat heterogeneity might alter species composition,spatial distribution,growth,biomass allocation,and mortality processes,yet its impact on diameter structure remains unclear.A fixed plot of 200 m×110 m was established in the Nanpan River Basin,Southwest China,within an old-growth oak forest(>300 years old),and the influence of site substrates(i.e.,rock and soil),topographic factors,sample area,and orientation on diameter distribution was analyzed.Trees on both rock and soil exhibited a reverse-J shape,quantifiable Project funding:This work was supported by the National Natural Science Foundation of China(32060340 and 31400542),the Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi(22-035-130-01).through the Weibull function.The substrates had a similar density,approximately 2100 plants/ha.However,the average and range of diameter of trees on rock were smaller than those on soil,suggesting that rock constrains tree growth.The diameter distribution of trees across microtopography also displayed a reverse-J shape.Yet,higher elevations and sunny slopes showed a greater curvature of diameter classes compared to lower elevations and shady slopes,indicating habitat preferences in karst trees.Sample area and orientation had minimal effects on diameter class curve that reached stability when the plot size was 6000 m2.These results suggest that the reverse J-shaped diameter distribution prevails at small scales in karst old-growth forests,encompassing multiple curvatures and spanning forest ecosystems.
基金supported by the National Natural Science Foundation of China (52172159)the Postdoctoral Fellowship Program of CPSF (GZB20230631)。
文摘Aqueous zinc metal batteries (AZMBs) are hindered by uncontrolled dendrites and side reactions during commercialization,despite their advantages of safety and high capacity density.Herein,we propose the electrical feedback strategy to restrain the Zn dendrites resulting from the"tip effect"and optimize interfacial Zn^(2+)distribution to accelerate electrodeposition kinetics by using the lithium niobate (LNO) layer.Specifically,at the bumps of the zinc anode,the ferroelectric LNO is polarized by the locally strong electric field,which in turn counteracts the"tip effect".In this way,the dynamic polarization of LNO can repair the uneven tip electric field to achieve uniform and flat zinc deposition.In addition,owing to the interaction between Nb and Zn^(2+),a higher concentration of Zn^(2+)near the zincophilic LNO@Zn surface is obtained for the rapid electrochemical reaction kinetics of plating.Considering the aforementioned advantages,the LNO@Zn anode harvests stable cycling over 1200 h at 10 mA cm^(-2)with a superior cumulative capacity of 5800 mAh cm^(-2).Assembled with the a-MnO_(2) cathode,the full cell using LNO@Zn anode exhibits the slower capacity decay (0.054%per cycle) during 1000 cycles.This strategy provides a perspective for stabilizing zinc metal anodes through dynamic electrical response and interfacial ion redistribution effect.
基金The authors gratefully acknowledge the financial supports from the National Science Foundation of China under Grant 52274027 as well as the High-end Foreign Experts Recruitment Plan of the Ministry of Science and Technology China under Grant G2022105027L.
文摘Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Basin of China,we presented an integrated workflow to investigate how(1)proppant placement in induced fracture and(2)non-linear flow in reservoir matrix would affect well productivity and fluid flow in the reservoir.Compared with our research before(Yue et al.,2020),here we extended this study into the development of multi-stage fractured horizontal wells(MFHWs)with large-scale complicated fracture geometry.The integrated workflow is based on the finite element method and consists of simulation models for proppant-laden fluid flow,fracture flow,and non-linear seepage flow,respectively.Simulation results indicate that the distribution of proppant inside the induced cracks significantly affects the productivity of the MFHW.When we assign an idealized proppant distribution instead of the real distribution,there will be an overestimation of 44.98%in daily oil rate and 30.63%in cumulative oil production after continuous development of 1000 days.Besides,threshold pressure gradient(TPG)also significantly affects the well performance in tight oil reservoirs.If we simply apply linear Darcy’s law to the reservoir matrix,the overall cumulative oil production can be overrated by 77%after 1000 days of development.In general,this research provides new insights into the development of tight oil reservoirs with TPG and meanwhile reveals the significance of proppant distribution and non-linear fluid flow in the production scenario design.
基金supported by the National Key Research and Development Program of China (Grant No.2021YFC3001204)。
文摘The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation fields of 85 kg cylindrical and fan-shaped fuel are investigated by experiments and numerical simulations.A dynamic model of the whole process for fuel dispersal and detonation is built.The concentration distribution of fuel is used as the initial condition to calculate the detonation stage,thus solving the initial value problem of detonation field.The phase and component changes of fuel cloud at different locations are compared.The fuel cloud is divided into directions of 0°,90°,135°and 180°.The results show that the maximum cloud radius is 20.94 m in 135°and the minimum is 12.04 m in 0°.The diameter of the detonation fireball is 53.6 m,and the peak temperature is 3455 K.The highest peak overpressure is 3.44 MPa in 0°and the lowest is 2.97 MPa in 135°.The proportion of liquid phase in 0°is22.90%,and the fuel loss is 11.8% and 9% higher than that in 135°and cylindrical charge,respectively.The stable propagation distance of blast wave in 135°is 42.50% longer than 0°and 28.37% longer than cylindrical charge.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471263)the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(Grant No.2021D01B09)+1 种基金the Initial Research Foundation of Kashi University(Grant No.022024076)“Mathematics and Finance Research Centre Funding Project”,Dazhou Social Science Federation(Grant No.SCMF202305)。
文摘A non-Maxwellian collision kernel is employed to study the evolution of wealth distribution in a multi-agent society.The collision kernel divides agents into two different groups under certain conditions. Applying the kinetic theory of rarefied gases, we construct a two-group kinetic model for the evolution of wealth distribution. Under the continuous trading limit, the Fokker–Planck equation is derived and its steady-state solution is obtained. For the non-Maxwellian collision kernel, we find a suitable redistribution operator to match the taxation. Our results illustrate that taxation and redistribution have the property to change the Pareto index.