The surrounding rock is prone to large-scale loosening and failure after the excavation of shallow large-span caverns because of the thin overlying strata and large cross-section span.The rational design of bolt suppo...The surrounding rock is prone to large-scale loosening and failure after the excavation of shallow large-span caverns because of the thin overlying strata and large cross-section span.The rational design of bolt support is very important to the safety control of surrounding rock as a common support means.The control mechanism and design method of bolt support for shallow-buried large-span caverns is carried out.The calculation method of bolt prestress and length based on arched failure and collapsed failure mode is established.The influence mechanism of different influencing factors on the bolt prestress and length is clarified.At the same time,the constant resistance energy-absorbing bolt with high strength and high toughness is developed,and the comparative test of mechanical properties is carried out.On this basis,the design method of high prestressed bolt support for shallow-buried large-span caverns is put forward,and the field test is carried out in Qingdao metro station in China.The monitoring results show that the maximum roof settlement is 6.8 mm after the new design method is adopted,and the effective control of the shallow-buried large-span caverns is realized.The research results can provide theoretical and technical support for the safety control of shallow-buried large-span caverns.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure...Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB.展开更多
The matters of equipment optimization development are usually discrete,fuzzy and non-quantitative.It is difficult directly to optimize the equipment development with a mathematical model.A set of methods for designing...The matters of equipment optimization development are usually discrete,fuzzy and non-quantitative.It is difficult directly to optimize the equipment development with a mathematical model.A set of methods for designing the equipment optimization development with six dimensions and eight main elements is established based on the theory and method of standardization.The top-tier design space of systematic development of equipment is built up by the relations of basic models,series and model spectrums.The relations of time and space for equipment optimization development are established.The design processes of a six dimension systematic space are expounded.The connotation of each plan in the main system space is analyzed.A design method for an entire equipment is established with standardization theory.The coordinating design methods of equipment technical system and the optimization design methods of equipment integration are discussed.The design methods for universalization and serialization of components and parts are established.The design methods of equipment optimization development highlight the relations of the basic model of platform,the serialization of platform basic models,the modularization of equipment functions,the model spectrum of variant equipment,and the universalization and serialization of components and parts.展开更多
In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model...In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.展开更多
The kinematical equations of McPherson suspension and steering system were set up by using R-W method of multi-rigid body system dynamics.The incidence matrix,route matrix,hinge vector matrix and system constraint equ...The kinematical equations of McPherson suspension and steering system were set up by using R-W method of multi-rigid body system dynamics.The incidence matrix,route matrix,hinge vector matrix and system constraint equations were educed.The optimization model of McPherson suspension steering mechanism was founded by regarding the McPherson suspension and steering system as an integrated system.In order to gain the best optimization effect,a continuous weighting function was created according to the requirement of steering system performance.Taking example for TJ7136U,the optimization design of McPherson suspension steering system was conducted in this paper.展开更多
基金Project(2023YFC3805700) supported by the National Key Research and Development Program of ChinaProjects(42477166,42277174) supported by the National Natural Science Foundation of China+2 种基金Project(2024JCCXSB01) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(KFJJ24-01M) supported by the State Key Laboratory of Explosion Science and Safety Protection,Beijing Institute of Technology,ChinaProject(HLCX-2024-04) supported by the Open Foundation of Collaborative Innovation Center of Green Development and Ecological Restoration of Mineral Resources,China。
文摘The surrounding rock is prone to large-scale loosening and failure after the excavation of shallow large-span caverns because of the thin overlying strata and large cross-section span.The rational design of bolt support is very important to the safety control of surrounding rock as a common support means.The control mechanism and design method of bolt support for shallow-buried large-span caverns is carried out.The calculation method of bolt prestress and length based on arched failure and collapsed failure mode is established.The influence mechanism of different influencing factors on the bolt prestress and length is clarified.At the same time,the constant resistance energy-absorbing bolt with high strength and high toughness is developed,and the comparative test of mechanical properties is carried out.On this basis,the design method of high prestressed bolt support for shallow-buried large-span caverns is put forward,and the field test is carried out in Qingdao metro station in China.The monitoring results show that the maximum roof settlement is 6.8 mm after the new design method is adopted,and the effective control of the shallow-buried large-span caverns is realized.The research results can provide theoretical and technical support for the safety control of shallow-buried large-span caverns.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金Project(2004G016-B) supported by the Science and Technology Development Program of Railways Department,China
文摘Aimed at two typical composite floor systems of through steel bridges in high speed railway,design methods of headed studs were put forward for different composite members through comparing and analyzing the structure,mechanical characteristics and transmission routes of deck loads.The simplified calculation models were brought out for the stud design of the longitudinal girders and transverse girders in the composite floor system of Nanjing Dashengguan Yangtze River Bridge (NDB).Studs were designed and arranged by taking the middle panel of 336 m main span for example.The results show that under deck loads,the longitudinal girders in the composite floor system of through steel bridges are in tension-bending state,longitudinal shear force on the interface is caused by both longitudinal force of "The first mechanical system" and vertical bending of "The second mechanical system",and studs can be arranged with equal space in terms of the shear force in range of 0.2d (where d is the panel length) on the top ends.Transverse girders in steel longitudinal and transverse girders-concrete slab composite deck are in compound-bending state,and out-of-plane bending has to be taken into account in the stud design.In orthotropic integral steel deck-concrete slab composite deck,out-of-plane bending of transverse girders is very small so that it can be neglected,and studs on the orthotropic integral steel deck can be arranged according to the structural requirements.The above design methods and simplified calculation models have been applied in the stud design of NDB.
文摘The matters of equipment optimization development are usually discrete,fuzzy and non-quantitative.It is difficult directly to optimize the equipment development with a mathematical model.A set of methods for designing the equipment optimization development with six dimensions and eight main elements is established based on the theory and method of standardization.The top-tier design space of systematic development of equipment is built up by the relations of basic models,series and model spectrums.The relations of time and space for equipment optimization development are established.The design processes of a six dimension systematic space are expounded.The connotation of each plan in the main system space is analyzed.A design method for an entire equipment is established with standardization theory.The coordinating design methods of equipment technical system and the optimization design methods of equipment integration are discussed.The design methods for universalization and serialization of components and parts are established.The design methods of equipment optimization development highlight the relations of the basic model of platform,the serialization of platform basic models,the modularization of equipment functions,the model spectrum of variant equipment,and the universalization and serialization of components and parts.
文摘In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively.
文摘The kinematical equations of McPherson suspension and steering system were set up by using R-W method of multi-rigid body system dynamics.The incidence matrix,route matrix,hinge vector matrix and system constraint equations were educed.The optimization model of McPherson suspension steering mechanism was founded by regarding the McPherson suspension and steering system as an integrated system.In order to gain the best optimization effect,a continuous weighting function was created according to the requirement of steering system performance.Taking example for TJ7136U,the optimization design of McPherson suspension steering system was conducted in this paper.