期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Mechanical stress and deformation analyses of pressurized cylindrical shells based on a higher-order modeling
1
作者 S.Mannani L.Collini M.Arefi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期24-33,共10页
In this research,mechanical stress,static strain and deformation analyses of a cylindrical pressure vessel subjected to mechanical loads are presented.The kinematic relations are developed based on higherorder sinusoi... In this research,mechanical stress,static strain and deformation analyses of a cylindrical pressure vessel subjected to mechanical loads are presented.The kinematic relations are developed based on higherorder sinusoidal shear deformation theory.Thickness stretching formulation is accounted for more accurate analysis.The total transverse deflection is divided into bending,shear and thickness stretching parts in which the third term is responsible for change of deflection along the thickness direction.The axisymmetric formulations are derived through principle of virtual work.A parametric study is presented to investigate variation of stress and strain components along the thickness and longitudinal directions.To explore effect of thickness stretching model on the static results,a comparison between the present results with the available results of literature is presented.As an important output,effect of micro-scale parameter is studied on the static stress and strain distribution. 展开更多
关键词 Principle of virtual work Thickness-stretched and shear deformable model Stress and strain analyses Cylindrical pressure vessel
在线阅读 下载PDF
On Numerical Modelling of Industrial Powder Compaction Processes for Large Deformation of Endochronic Plasticity at Finite Strains
2
作者 A R Khoei A Bakhshiani M Mofid 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期95-96,共2页
Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the c... Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the compaction processes are to obtain a compact with the geometrical requirements, without cracks, and with a uniform distribution of density. Design of such proc esses consist, essentially, in determine the sequence and relative displacements of die and punches in order to achieve such goals. A.B. Khoei presented a gener al framework for the finite element simulation of powder forming processes based on the following aspects; a large displacement formulation, centred on a total and updated Lagrangian formulation; an adaptive finite element strategy based on error estimates and automatic remeshing techniques; a cap model based on a hard ening rule in modelling of the highly non-linear behaviour of material; and the use of an efficient contact algorithm in the context of an interface element fo rmulation. In these references, the non-linear behaviour of powder was adequately desc ribed by the cap plasticity model. However, it suffers from a serious deficiency when the stress-point reaches a yield surface. In the flow theory of plasticit y, the transition from an elastic state to an elasto-plastic state appears more or less abruptly. For powder material it is very difficult to define the locati on of yield surface, because there is no distinct transition from elastic to ela stic-plastic behaviour. Results of experimental test on some hard met al powder show that the plastic effects were begun immediately upon loading. In such mater ials the domain of the yield surface would collapse to a point, so making the di rection of plastic increment indeterminate, because all directions are normal to a point. Thus, the classical plasticity theory cannot deal with such materials and an advanced constitutive theory is necessary. In the present paper, the constitutive equations of powder materials will be discussed via an endochronic theory of plasticity. This theory provides a unifi ed point of view to describe the elastic-plastic behaviour of material since it places no requirement for a yield surface and a ’loading function’ to disting uish between loading an unloading. Endochronic theory of plasticity has been app lied to a number of metallic materials, concrete and sand, but to the knowledge of authors, no numerical scheme of the model has been applied to powder material . In the present paper, a new approach is developed based on an endochronic rate independent, density-dependent plasticity model for describing the isothermal deformation behavior of metal powder at low homologous temperature. Although the concept of yield surface has not been explicitly assumed in endochronic theory, it is shown that the cone-cap plasticity yield surface (Fig.1), which is the m ost commonly used plasticity models for describing the behavior of powder materi al can be easily derived as a special case of the proposed endochronic theory. Fig.1 Trace of cone-cap yield function on the meridian pl ane for different relative density As large deformation is observed in powder compaction process, a hypoelastic-pl astic formulation is developed in the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of reference that greatly s implifies endochronic constitutive relation in finite plasticity. Constitutive e quations of the endochronic theory and their numerical integration are establish ed and procedures for determining material parameters of the model are demonstra ted. Finally, the numerical schemes are examined for efficiency in the model ling of a tip shaped component, as shown in Fig.2. Fig.2 A shaped tip component. a) Geometry, boundary conditio n and finite element mesh; b) density distribution at final stage of 展开更多
关键词 In On Numerical modelling of Industrial Powder Compaction Processes for Large Deformation of Endochronic Plasticity at Finite Strains
在线阅读 下载PDF
Numerical simulation analysis for deformation deviation and experimental verification for an antenna thin-wall parts considering riveting assembly with finite element method 被引量:8
3
作者 PAN Ming-hui TANG Wen-cheng +1 位作者 XING Yan NI Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期60-77,共18页
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr... In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future. 展开更多
关键词 thin-wall parts assembly assembly deformation deviation theoretical deformation model finite element simulation measuring experiment
在线阅读 下载PDF
InSAR measurements of surface deformation over permafrost on Fenghuoshan Mountains section,Qinghai-Tibet Plateau 被引量:1
4
作者 YANG Honglei JIANG Qiao +2 位作者 HAN Jianfeng KANG Ki-Yeob PENG Junhuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1284-1303,共20页
The permafrost development in the Qinghai-Tibet Engineering Corridor(QTEC)is affected by natural environment changes and human engineering activities.Human engineering activities may damage the permafrost growing envi... The permafrost development in the Qinghai-Tibet Engineering Corridor(QTEC)is affected by natural environment changes and human engineering activities.Human engineering activities may damage the permafrost growing environment,which in turn impact these engineering activities.Thus high spatial-temporal resolution monitoring over the QTEC in the permafrost region is very necessary.This paper presents a method for monitoring the frozen soil area using the intermittent coherencebased small baseline subset(ICSBAS).The method can improve the point density of the results and enhance the interpretability of deformation results by identifying the discontinuous coherent points according to the coherent value of time series.Using the periodic function that models the seasonal variation of permafrost,we separate the long wavelength atmospheric delay and establish an estimation model for the frozen soil deformation.Doing this can raise the monitoring accuracy and improve the understanding of the surface deformation of the frozen soil.In this study,we process 21 PALSAR data acquired by the Alos satellite with the proposed ICSBAS technique.The results show that the frozen soil far from the QTR in the study area experiences frost heave and thaw settlement(4.7 cm to8.4 cm)alternatively,while the maximum settlement along the QTR reaches 12 cm.The interferomatric syntnetic aperture radar(InSAR)-derived results are validated using the ground leveling data nearby the Beiluhe basin.The validation results show the InSAR results have good consistency with the leveling data in displacement rates as well as time series.We also find that the deformation in the permafrost area is correlated with temperature,human activities and topography.Based on the interfering degree of human engineering activities on the permafrost environment,we divide the QTEC along the Qinghai-Tibet Railway into engineering damage zone,transition zone and natural permafrost. 展开更多
关键词 PERMAFROST Qinghai-Tibet Plateau small baseline subset interferomatric syntnetic aperture radar(SBAS-In SAR) deformation model
在线阅读 下载PDF
Effect of asymmetric rolling on mechanical characteristics,texture and misorientations in ferritic steel
5
作者 Wrofiski Sebastian Wierzbanowski Krzysztof +2 位作者 Bacroix Brigitte Chauveau Thierry Wrobel Mirostaw 《Journal of Central South University》 SCIE EI CAS 2013年第6期1443-1455,共13页
The mechanical and microstructural properties as well as crystallographic textures of asymmetrically rolled low carbon steel were studied.The modelling of plastic deformation was carried out in two scales:in the macro... The mechanical and microstructural properties as well as crystallographic textures of asymmetrically rolled low carbon steel were studied.The modelling of plastic deformation was carried out in two scales:in the macro-scale,using the finite elements method,and in the crystallographic scale,using the polycrystalline deformation model.The internal stress distribution in the rolling gap was calculated using the finite elements method and these stresses were then applied to the polycrystalline elasto-plastic deformation model.Selected mechanical properties,namely residual stress distribution,deformation work,applied force and torques,and bend amplitude,were calculated.The diffraction measurements,X-ray and electron backscatter diffraction,enabled the examination of texture heterogeneity and selected microstructure characteristics.The predicted textures agree well with those determined experimentally.The plastic anisotropy of cold rolled ferritic steel samples,connected with texture,was expressed by Lankford coefficient. 展开更多
关键词 asymmetric rolling crystallographic texture residual stress deformation model finite elements method DIFFRACTION
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部