It is well known that preparing temperatures and defects are highly related to deep-level impurities. In our studies, the CdTe polycrystalline films have been prepared at various temperatures by close spaced sublimati...It is well known that preparing temperatures and defects are highly related to deep-level impurities. In our studies, the CdTe polycrystalline films have been prepared at various temperatures by close spaced sublimation (CSS). The different preparing temperature effects on CdS/CdTe solar cells and deep-level impurities have been investigated by I-V and C-V measurements and deep level transient spectroscopy (DLTS). By comparison, less dark saturated current density, higher carrier concentration, and better photovoltaic performance are demonstrated in a 580℃sample. Also there is less deep-level impurity recombination, because the lower hole trap concentration is present in this sample. In addition, three deep levels, Ev + 0.341 eV(H4), E, + 0.226 eV(HS) and Ec - 0.147 eV(E3), are found in the 580℃sample, and the possible source of deep levels is analysed and discussed.展开更多
Deep levels in Cds/CdTe thin film solar cells have a potent influence on the electrical property of these devices. As an essential layer in the solar cell device structure, back contact is believed to induce some deep...Deep levels in Cds/CdTe thin film solar cells have a potent influence on the electrical property of these devices. As an essential layer in the solar cell device structure, back contact is believed to induce some deep defects in the CdTe thin film. With the help of deep level transient spectroscopy (DLTS), we study the deep levels in CdS/CdTe thin film solar cells with Te:Cu back contact. One hole trap and one electron trap are observed. The hole trap H1, localized at Ev+0.128~eV, originates from the vacancy of Cd (VCd. The electron trap E1, found at Ec-0.178~eV, is considered to be correlated with the interstitial Cui= in CdTe.展开更多
Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscop...Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscopy was employed to study the activation energy and capture cross-section of helium-induced defects in silicon samples. It was shown that the activation energy levels produced by helium-ion irradiation first increased with increasing annealing temperature, with the maximum value of the activation energy occurring at 873 K, and reduced with further increase of the annealing temperature. The energy levels of defects in the samples annealed at 873 and 1073 K are found to be located near the mid-forbidden energy gap level so that they can act as thermally stable carrier recombination centres.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 60506004)the National High Technology Research and Development Program of China (Grant No. 2003AA513010)
文摘It is well known that preparing temperatures and defects are highly related to deep-level impurities. In our studies, the CdTe polycrystalline films have been prepared at various temperatures by close spaced sublimation (CSS). The different preparing temperature effects on CdS/CdTe solar cells and deep-level impurities have been investigated by I-V and C-V measurements and deep level transient spectroscopy (DLTS). By comparison, less dark saturated current density, higher carrier concentration, and better photovoltaic performance are demonstrated in a 580℃sample. Also there is less deep-level impurity recombination, because the lower hole trap concentration is present in this sample. In addition, three deep levels, Ev + 0.341 eV(H4), E, + 0.226 eV(HS) and Ec - 0.147 eV(E3), are found in the 580℃sample, and the possible source of deep levels is analysed and discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 60506004)the National High Technology Research and Development Program of China (Grant No. 2003AA513010)
文摘Deep levels in Cds/CdTe thin film solar cells have a potent influence on the electrical property of these devices. As an essential layer in the solar cell device structure, back contact is believed to induce some deep defects in the CdTe thin film. With the help of deep level transient spectroscopy (DLTS), we study the deep levels in CdS/CdTe thin film solar cells with Te:Cu back contact. One hole trap and one electron trap are observed. The hole trap H1, localized at Ev+0.128~eV, originates from the vacancy of Cd (VCd. The electron trap E1, found at Ec-0.178~eV, is considered to be correlated with the interstitial Cui= in CdTe.
基金Project supported by the National Natural Science Foundation of China (Grant No 10575124)
文摘Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscopy was employed to study the activation energy and capture cross-section of helium-induced defects in silicon samples. It was shown that the activation energy levels produced by helium-ion irradiation first increased with increasing annealing temperature, with the maximum value of the activation energy occurring at 873 K, and reduced with further increase of the annealing temperature. The energy levels of defects in the samples annealed at 873 and 1073 K are found to be located near the mid-forbidden energy gap level so that they can act as thermally stable carrier recombination centres.