Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The ...Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors, disturbed local magnetic field, and complex motion modes of the pedestrian. This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE) framework, which can be applied for long-term navigation tasks. A Bi-directional Long Short-Term Memory(Bi-LSTM) based quasi-static magnetic field(QSMF) detection algorithm is developed for extracting useful magnetic observation for heading calibration, and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period. In addition, a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks, and enhanced by the magnetic and trajectory features assisted loop detection algorithm. Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms, and final estimated heading and positioning accuracy indexes reaches 5° and less than 2 m under the time period of 30 min, respectively.展开更多
The parametric temporal data model captures a real world entity in a single tuple, which reduces query language complexity. Such a data model, however, is difficult to be implemented on top of conventional databases b...The parametric temporal data model captures a real world entity in a single tuple, which reduces query language complexity. Such a data model, however, is difficult to be implemented on top of conventional databases because of its unfixed attribute sizes. XML is a matured technology and can be an elegant solution for such challenge. Representing data in XML trigger a question about storage efficiency. The goal of this work is to provide a straightforward answer to such a question. To this end, we compare three different storage models for the parametric temporal data model and show that XML is not worse than any other approaches. Furthermore, XML outperforms the other storages under certain conditions. Therefore, our simulation results provide a positive indication that the myth about XML is not true in the parametric temporal data model.展开更多
Multidatabase systems are designed to achieve schema integration and data interoperation among distributed and heterogeneous database systems. But data model heterogeneity and schema heterogeneity make this a challeng...Multidatabase systems are designed to achieve schema integration and data interoperation among distributed and heterogeneous database systems. But data model heterogeneity and schema heterogeneity make this a challenging task. A multidatabase common data model is firstly introduced based on XML, named XML-based Integration Data Model (XIDM), which is suitable for integrating different types of schemas. Then an approach of schema mappings based on XIDM in multidatabase systems has been presented. The mappings include global mappings, dealing with horizontal and vertical partitioning between global schemas and export schemas, and local mappings, processing the transformation between export schemas and local schemas. Finally, the illustration and implementation of schema mappings in a multidatabase prototype - Panorama system are also discussed. The implementation results demonstrate that the XIDM is an efficient model for managing multiple heterogeneous data sources and the approaches of schema mapping based on XIDM behave very well when integrating relational, object-oriented database systems and other file systems.展开更多
Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s in...Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s include system design, integration of object-oriented technology, data distri bution, collaborative and distributed manufacturing working environment, secur ity, and web-based integration. However, there are limitations on their rese arches. In particular, they cannot cater for PDM in distributed manufacturing e nvironment. This is especially true in South China, where many Hong Kong (HK) ma nufacturers have moved their production plants to different locations in Pearl R iver Delta for cost reduction. However, they retain their main offices in HK. Development of PDM system is inherently complex. Product related data cover prod uct name, product part number (product identification), drawings, material speci fications, dimension requirement, quality specification, test result, log size, production schedules, product data version and date of release, special tooling (e.g. jig and fixture), mould design, project engineering in charge, cost spread sheets, while process data includes engineering release, engineering change info rmation management, and other workflow related to the process information. Accor ding to Cornelissen et al., the contemporary PDM system should contains manageme nt functions in structure, retrieval, release, change, and workflow. In system design, development and implementation, a formal specification is nece ssary. However, there is no formal representation model for PDM system. Theref ore a graphical representation model is constructed to express the various scena rios of interactions between users and the PDM system. Statechart is then used to model the operations of PDM system, Fig.1. Statechart model bridges the curr ent gap between requirements, scenarios, and the initial design specifications o f PDM system. After properly analyzing the PDM system, a new distributed PDM (DPDM) system is proposed. Both graphical representation and statechart models are constructed f or the new DPDM system, Fig.2. New product data of DPDM and new system function s are then investigated to support product information flow in the new distribut ed environment. It is found that statecharts allow formal representations to capture the informa tion and control flows of both PDM and DPDM. In particular, statechart offers a dditional expressive power, when compared to conventional state transition diagr am, in terms of hierarchy, concurrency, history, and timing for DPDM behavioral modeling.展开更多
Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional ...Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios.展开更多
There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutte...There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutter by using OoSMs. In order to address the nonlinear OoSMs obtained by the airborne radar located on a moving platform from a maneuvering target in clut- ter, an interacting multiple model probabilistic data association (IMMPDA) algorithm with the OoSM is developed. To be practical, the algorithm is based on the Earth-centered Earth-fixed (ECEF) coordinate system where it considers the effect of the platform's attitude and the curvature of the Earth. The proposed method is validated through the Monte Carlo test compared with the perfor- mance of the standard IMMPDA algorithm ignoring the OoSM, and the conclusions show that using the OoSM can improve the track- ing performance, and the shorter the lag step is, the greater degree the performance is improved, but when the lag step is large, the performance is not improved any more by using the OoSM, which can provide some references for engineering application.展开更多
文摘Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors, disturbed local magnetic field, and complex motion modes of the pedestrian. This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE) framework, which can be applied for long-term navigation tasks. A Bi-directional Long Short-Term Memory(Bi-LSTM) based quasi-static magnetic field(QSMF) detection algorithm is developed for extracting useful magnetic observation for heading calibration, and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period. In addition, a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks, and enhanced by the magnetic and trajectory features assisted loop detection algorithm. Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms, and final estimated heading and positioning accuracy indexes reaches 5° and less than 2 m under the time period of 30 min, respectively.
基金supported by the National Research Foundation in Korea through contract N-12-NM-IR05
文摘The parametric temporal data model captures a real world entity in a single tuple, which reduces query language complexity. Such a data model, however, is difficult to be implemented on top of conventional databases because of its unfixed attribute sizes. XML is a matured technology and can be an elegant solution for such challenge. Representing data in XML trigger a question about storage efficiency. The goal of this work is to provide a straightforward answer to such a question. To this end, we compare three different storage models for the parametric temporal data model and show that XML is not worse than any other approaches. Furthermore, XML outperforms the other storages under certain conditions. Therefore, our simulation results provide a positive indication that the myth about XML is not true in the parametric temporal data model.
文摘Multidatabase systems are designed to achieve schema integration and data interoperation among distributed and heterogeneous database systems. But data model heterogeneity and schema heterogeneity make this a challenging task. A multidatabase common data model is firstly introduced based on XML, named XML-based Integration Data Model (XIDM), which is suitable for integrating different types of schemas. Then an approach of schema mappings based on XIDM in multidatabase systems has been presented. The mappings include global mappings, dealing with horizontal and vertical partitioning between global schemas and export schemas, and local mappings, processing the transformation between export schemas and local schemas. Finally, the illustration and implementation of schema mappings in a multidatabase prototype - Panorama system are also discussed. The implementation results demonstrate that the XIDM is an efficient model for managing multiple heterogeneous data sources and the approaches of schema mapping based on XIDM behave very well when integrating relational, object-oriented database systems and other file systems.
文摘Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s include system design, integration of object-oriented technology, data distri bution, collaborative and distributed manufacturing working environment, secur ity, and web-based integration. However, there are limitations on their rese arches. In particular, they cannot cater for PDM in distributed manufacturing e nvironment. This is especially true in South China, where many Hong Kong (HK) ma nufacturers have moved their production plants to different locations in Pearl R iver Delta for cost reduction. However, they retain their main offices in HK. Development of PDM system is inherently complex. Product related data cover prod uct name, product part number (product identification), drawings, material speci fications, dimension requirement, quality specification, test result, log size, production schedules, product data version and date of release, special tooling (e.g. jig and fixture), mould design, project engineering in charge, cost spread sheets, while process data includes engineering release, engineering change info rmation management, and other workflow related to the process information. Accor ding to Cornelissen et al., the contemporary PDM system should contains manageme nt functions in structure, retrieval, release, change, and workflow. In system design, development and implementation, a formal specification is nece ssary. However, there is no formal representation model for PDM system. Theref ore a graphical representation model is constructed to express the various scena rios of interactions between users and the PDM system. Statechart is then used to model the operations of PDM system, Fig.1. Statechart model bridges the curr ent gap between requirements, scenarios, and the initial design specifications o f PDM system. After properly analyzing the PDM system, a new distributed PDM (DPDM) system is proposed. Both graphical representation and statechart models are constructed f or the new DPDM system, Fig.2. New product data of DPDM and new system function s are then investigated to support product information flow in the new distribut ed environment. It is found that statecharts allow formal representations to capture the informa tion and control flows of both PDM and DPDM. In particular, statechart offers a dditional expressive power, when compared to conventional state transition diagr am, in terms of hierarchy, concurrency, history, and timing for DPDM behavioral modeling.
基金supported by the National Natural Science Foundation of China under(Grant No.52175531)in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant(Grant Nos.KJQN202000605 and KJZD-M202000602)。
文摘Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios.
基金supported by the National Natural Science Foundation of China(61102168)
文摘There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutter by using OoSMs. In order to address the nonlinear OoSMs obtained by the airborne radar located on a moving platform from a maneuvering target in clut- ter, an interacting multiple model probabilistic data association (IMMPDA) algorithm with the OoSM is developed. To be practical, the algorithm is based on the Earth-centered Earth-fixed (ECEF) coordinate system where it considers the effect of the platform's attitude and the curvature of the Earth. The proposed method is validated through the Monte Carlo test compared with the perfor- mance of the standard IMMPDA algorithm ignoring the OoSM, and the conclusions show that using the OoSM can improve the track- ing performance, and the shorter the lag step is, the greater degree the performance is improved, but when the lag step is large, the performance is not improved any more by using the OoSM, which can provide some references for engineering application.