An optimal design approach of high order FIR digital filter is developed based on the algorithm of neural networks with cosine basis function . The main idea is to minimize the sum of the square errors between the amp...An optimal design approach of high order FIR digital filter is developed based on the algorithm of neural networks with cosine basis function . The main idea is to minimize the sum of the square errors between the amplitude response of the desired FIR filter and that of the designed by training the weights of neural networks, then obtains the impulse response of FIR digital filter . The convergence theorem of the neural networks algorithm is presented and proved, and the optimal design method is introduced by designing four kinds of FIR digital filters , i.e., low-pass, high-pass, bandpass , and band-stop FIR digital filter. The results of the amplitude responses show that attenuation in stop-bands is more than 60 dB with no ripple and pulse existing in pass-bands, and cutoff frequency of passband and stop-band is easily controlled precisely .The presented optimal design approach of high order FIR digital filter is significantly effective.展开更多
A new approach for the design of two-dimensional (2-D) linear phase FIR digital filters based on a new neural networks algorithm (NNA) is provided. A compact expression for the transfer function of a 2-D linear ph...A new approach for the design of two-dimensional (2-D) linear phase FIR digital filters based on a new neural networks algorithm (NNA) is provided. A compact expression for the transfer function of a 2-D linear phase FIR filter is derived based on its frequency response characteristic, and the NNA, based on minimizing the square-error in the frequency-domain, is established according to the compact expression. To illustrate the stability of the NNA, the convergence theorem is presented and proved. Design examples are also given, and the results show that the ripple is considerably small in passband and stopband, and the NNA-based method is of powerful stability and requires quite little amount of computations.展开更多
The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic deriva...The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic derivatives of the Lyapunov functions, a theorem for asymptotic properties of the LaSal e-type described by limit sets of the solutions of the equations is obtained. Based on the asymptotic properties to the limit set, a theorem of asymptotic stability of the stochastic functional differential equations is also established, which enables us to construct the Lyapunov functions more easily in application. Particularly, the wel-known classical theorem on stochastic stability is a special case of our result, the operator LV is not required to be negative which is more general to fulfil and the stochastic perturbation plays an important role in it. These show clearly the improvement of the traditional method to find the Lyapunov functions. A numerical simulation example is given to il ustrate the usage of the method.展开更多
Four optimal approaches of high-order finite-impulse response(FIR) digital filters were developed for designing four types filters using neural network algorithms. The solutions were presented as parallel algorithms t...Four optimal approaches of high-order finite-impulse response(FIR) digital filters were developed for designing four types filters using neural network algorithms. The solutions were presented as parallel algorithms to approximate the desired frequency response specification. Therefore, these methods avoid matrix inversion, and make a fast calculation of the filter’s coefficients possible. The convergence theorems of these proposed algorithms were presented and proved to illustrate them stable, and the implementation of these methods was described together with some design guidelines. The simulation results show that the ripples of the designed FIR filters are significantly little in the pass-band and stop-band, and the proposed algorithms are of fast convergence.展开更多
基金This project was supported by the National Natural Science Foundation of China (50277010)Doctoral Special Fund of Ministry of Education (20020532016) and Fund of Outstanding Young Scientist of Hunan University.
文摘An optimal design approach of high order FIR digital filter is developed based on the algorithm of neural networks with cosine basis function . The main idea is to minimize the sum of the square errors between the amplitude response of the desired FIR filter and that of the designed by training the weights of neural networks, then obtains the impulse response of FIR digital filter . The convergence theorem of the neural networks algorithm is presented and proved, and the optimal design method is introduced by designing four kinds of FIR digital filters , i.e., low-pass, high-pass, bandpass , and band-stop FIR digital filter. The results of the amplitude responses show that attenuation in stop-bands is more than 60 dB with no ripple and pulse existing in pass-bands, and cutoff frequency of passband and stop-band is easily controlled precisely .The presented optimal design approach of high order FIR digital filter is significantly effective.
文摘A new approach for the design of two-dimensional (2-D) linear phase FIR digital filters based on a new neural networks algorithm (NNA) is provided. A compact expression for the transfer function of a 2-D linear phase FIR filter is derived based on its frequency response characteristic, and the NNA, based on minimizing the square-error in the frequency-domain, is established according to the compact expression. To illustrate the stability of the NNA, the convergence theorem is presented and proved. Design examples are also given, and the results show that the ripple is considerably small in passband and stopband, and the NNA-based method is of powerful stability and requires quite little amount of computations.
基金supported by the National Natural Science Foundation of China(61273126)the Natural Science Foundation of Guangdong Province(10251064101000008+1 种基金S201210009675)the Fundamental Research Funds for the Central Universities(2012ZM0059)
文摘The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic derivatives of the Lyapunov functions, a theorem for asymptotic properties of the LaSal e-type described by limit sets of the solutions of the equations is obtained. Based on the asymptotic properties to the limit set, a theorem of asymptotic stability of the stochastic functional differential equations is also established, which enables us to construct the Lyapunov functions more easily in application. Particularly, the wel-known classical theorem on stochastic stability is a special case of our result, the operator LV is not required to be negative which is more general to fulfil and the stochastic perturbation plays an important role in it. These show clearly the improvement of the traditional method to find the Lyapunov functions. A numerical simulation example is given to il ustrate the usage of the method.
基金Project (50677014) supported by the National Natural Science Foundation of China project (20060532002) supported by the Doctoral Special Fund of Ministry of Education, China+1 种基金project (NCET-04-0767) supported by the Program for New Century Excellent Talents in Universityprojects(06JJ2024, 03GKY3115, 04FJ2003, and 05GK2005) supported by the Foundation of Hunan Provincial Science and Technology
文摘Four optimal approaches of high-order finite-impulse response(FIR) digital filters were developed for designing four types filters using neural network algorithms. The solutions were presented as parallel algorithms to approximate the desired frequency response specification. Therefore, these methods avoid matrix inversion, and make a fast calculation of the filter’s coefficients possible. The convergence theorems of these proposed algorithms were presented and proved to illustrate them stable, and the implementation of these methods was described together with some design guidelines. The simulation results show that the ripples of the designed FIR filters are significantly little in the pass-band and stop-band, and the proposed algorithms are of fast convergence.