期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Collaborative optimization of maintenance and spare ordering of continuously degrading systems 被引量:6
1
作者 Wei Zhou Dongfeng Wang +1 位作者 Jingyu Sheng Bo Guo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期63-70,共8页
A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material d... A collaborative optimization model for maintenance and spare ordering of a single-unit degrading system is proposed in this paper based on the continuous detection. A gamma distribution is used to model the material degradation. The degrading decrement after the imperfect maintenance action is assumed as a random variable normal distribution. This model aims to ob- tain the optimal maintenance policy and spare ordering point with the expected cost rate within system lifecycle as the optimization objective. The rationality and feasibility of the model are proved through a numerical example. 展开更多
关键词 collaborative optimization maintenance spare order- ing degrading system.
在线阅读 下载PDF
A robust multi-objective and multi-physics optimization of multi-physics behavior of microstructure
2
作者 Hamda Chagraoui Mohamed Soula Mohamed Guedri 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3225-3238,共14页
A new strategy is presented to solve robust multi-physics multi-objective optimization problem known as improved multi-objective collaborative optimization (IMOCO) and its extension improved multi-objective robust c... A new strategy is presented to solve robust multi-physics multi-objective optimization problem known as improved multi-objective collaborative optimization (IMOCO) and its extension improved multi-objective robust collaborative (IMORCO). In this work, the proposed IMORCO approach combined the IMOCO method, the worst possible point (WPP) constraint cuts and the Genetic algorithm NSGA-II type as an optimizer in order to solve the robust optimization problem of multi-physics of microstructures with uncertainties. The optimization problem is hierarchically decomposed into two levels: a microstructure level, and a disciplines levels, For validation purposes, two examples were selected: a numerical example, and an engineering example of capacitive micro machined ultrasonic transducers (CMUT) type. The obtained results are compared with those obtained from robust non-distributed and distributed optimization approach, non-distributed multi-objective robust optimization (NDMORO) and multi-objective collaborative robust optimization (McRO), respectively. Results obtained from the application of the IMOCO approach to an optimization problem of a CMUT cell have reduced the CPU time by 44% ensuring a Pareto front close to the reference non-distributed multi-objective optimization (NDMO) approach (mahalanobis distance, D2M =0.9503 and overall spread, So=0.2309). In addition, the consideration of robustness in IMORCO approach applied to a CMUT cell of optimization problem under interval uncertainty has reduced the CPU time by 23% keeping a robust Pareto front overlaps with that obtained by the robust NDMORO approach (D2M =10.3869 and So=0.0537). 展开更多
关键词 multi-physics multi-objective optimization robust optimization collaborative optimization non-distributed anddistributed optimization uncertainty interval
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部