In the reconstructed phase space, based on the Karhunen-Loeve transformation (KLT), the new local linear prediction method is proposed to predict chaotic time series. & noise-free chaotic time series and a noise ad...In the reconstructed phase space, based on the Karhunen-Loeve transformation (KLT), the new local linear prediction method is proposed to predict chaotic time series. & noise-free chaotic time series and a noise added chaotic time series are analyzed. The simulation results show that the KLT-based local linear prediction method can effectively make one-step and multi-step prediction for chaotic time series, and the one-step and multi-step prediction accuracies of the KLT-based local linear prediction method are superior to that of the traditional local linear prediction.展开更多
Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time ser...Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time series is taken into account in the prediction procedure; parameters of reconstruction-detay and embedding-dimension for phase-space reconstruction are calculated in light of mutual-information and false-nearest-neighbor method, respectively. Precision and functionality have been demonstrated by the experimental results on the basis of the prediction of Lorenz chaotic time series.展开更多
Chaos theory was introduced for water quality, prediction, and the model of water quality prediction was established by combining phase space reconstruction theory and BP neural network forecasting method. Through the...Chaos theory was introduced for water quality, prediction, and the model of water quality prediction was established by combining phase space reconstruction theory and BP neural network forecasting method. Through the phase space reconstruction, the one-dimensional water quality time series were mapped to be multi-dimensional sequence, which enriched the spatial information of water quality change and expanded mapping region of training samples of BP neural network. Established model of combining chaos theory and BP neural network were applied to forecast turbidity time series of a certain reservoir. Contrast to BP neural network method, the relative error and the mean squared error of the combined method had all varying degrees of lower. Results indicated the neural network model with chaos theory had the higher prediction accuracy, at the same time, it had better fault-tolerant capability and generalization performance .展开更多
基金supported partly by the National Natural Science Foundation of China(60573065)the Natural Science Foundation of Shandong Province,China(Y2007G33)the Key Subject Research Foundation of Shandong Province,China(XTD0708).
文摘In the reconstructed phase space, based on the Karhunen-Loeve transformation (KLT), the new local linear prediction method is proposed to predict chaotic time series. & noise-free chaotic time series and a noise added chaotic time series are analyzed. The simulation results show that the KLT-based local linear prediction method can effectively make one-step and multi-step prediction for chaotic time series, and the one-step and multi-step prediction accuracies of the KLT-based local linear prediction method are superior to that of the traditional local linear prediction.
文摘Based on discussion on the theories of support vector machines (SVM), an one-step prediction model for time series prediction is presented, wherein the chaos theory is incorporated. Chaotic character of the time series is taken into account in the prediction procedure; parameters of reconstruction-detay and embedding-dimension for phase-space reconstruction are calculated in light of mutual-information and false-nearest-neighbor method, respectively. Precision and functionality have been demonstrated by the experimental results on the basis of the prediction of Lorenz chaotic time series.
文摘Chaos theory was introduced for water quality, prediction, and the model of water quality prediction was established by combining phase space reconstruction theory and BP neural network forecasting method. Through the phase space reconstruction, the one-dimensional water quality time series were mapped to be multi-dimensional sequence, which enriched the spatial information of water quality change and expanded mapping region of training samples of BP neural network. Established model of combining chaos theory and BP neural network were applied to forecast turbidity time series of a certain reservoir. Contrast to BP neural network method, the relative error and the mean squared error of the combined method had all varying degrees of lower. Results indicated the neural network model with chaos theory had the higher prediction accuracy, at the same time, it had better fault-tolerant capability and generalization performance .