In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used t...In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used to solve the assignment problem of serial-parallel systems. First of all, by replacing parallel jobs with virtual jobs, the proposed algorithm converts the serial-parallel system into a pure serial system, where the classical Hungarian algorithm can be used to generate a temporal assignment plan via optimization. Afterwards, the assignment plan is validated by checking whether the virtual jobs can be realized by real jobs through local searching. If the assignment plan is not valid, the converted system will be adapted by adjusting the parameters of virtual jobs, and then be optimized again. Through iterative searching, the valid optimal assignment plan can eventually be obtained.To evaluate the proposed algorithm, the valid optimal assignment plan is applied to labor allocation of a manufacturing system which is a typical serial-parallel system.展开更多
Traditional Hungarian method can only solve standard assignment problems, while can not solve competition assignment problems. This article emphatically discussed the difference between standard assignment problems an...Traditional Hungarian method can only solve standard assignment problems, while can not solve competition assignment problems. This article emphatically discussed the difference between standard assignment problems and competition assignment problems. The kinds of competition assignment problem algorithms based on Hungarian method and the solutions of them were studied.展开更多
The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-d...The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.展开更多
The semi-Lagrangian relaxation (SLR), a new exactmethod for combinatorial optimization problems with equality constraints,is applied to the quadratic assignment problem (QAP).A dual ascent algorithm with finite co...The semi-Lagrangian relaxation (SLR), a new exactmethod for combinatorial optimization problems with equality constraints,is applied to the quadratic assignment problem (QAP).A dual ascent algorithm with finite convergence is developed forsolving the semi-Lagrangian dual problem associated to the QAP.We perform computational experiments on 30 moderately difficultQAP instances by using the mixed integer programming solvers,Cplex, and SLR+Cplex, respectively. The numerical results notonly further illustrate that the SLR and the developed dual ascentalgorithm can be used to solve the QAP reasonably, but also disclosean interesting fact: comparing with solving the unreducedproblem, the reduced oracle problem cannot be always effectivelysolved by using Cplex in terms of the CPU time.展开更多
A new troubleshooting algorithm for solving assignment problem based on existing algorithms is proposed, and an analysis on the related theory is given. By applying the new troubleshooting algorithm to the Lagrange re...A new troubleshooting algorithm for solving assignment problem based on existing algorithms is proposed, and an analysis on the related theory is given. By applying the new troubleshooting algorithm to the Lagrange relaxation algorithm of the multi-dimensional assignment problem of data association for multi-passive-sensor multi-target location systems, and comparing the simulation results with that of the Hungarian algorithm which is the classical optimal solving algorithm, and the multi-layer ordersearching algorithm which is a sub-optimal solving algorithm, the performance and applying conditions of the new algorithm are summarized. Theory analysis and simulation results prove the effectiveness and superiority of the new algorithm.展开更多
In this paper we carried out a probabilistic analysis for a machine repair system with a general service-time distribution by means of generalized Markov renewal processes. Some formulas for the steady-state performan...In this paper we carried out a probabilistic analysis for a machine repair system with a general service-time distribution by means of generalized Markov renewal processes. Some formulas for the steady-state performance measures. such as the distribution of queue sizes, average queue length, degree of repairman utilization and so on. are then derived. Finally, the machine repair model and a multiple critcria decision-making method are applied to study machine assignment problem with a general service-time distribution to determine the optimum number of machines being serviced by one repairman.展开更多
Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper ...Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper focuses on the tracking algo- rithm for hypothesis generation, hypothesis probability calculation, hypotheses reduction and pruning and other sectors. From an engineering point of view, a technique called the linear assignment problem (LAP) used in the implementation of M-best feasible hypotheses generation, the number of the hypotheses is relatively small compared with the total number that may exist in each scan, also the N-scan back pruning is used, the algorithm's efficiency and practicality have been improved. Monte Carlo simulation results show that the proposed algorithm can track the boost phase of multiple ballistic missiles and it has a good tracking performance compared with joint probability data association (JPDA).展开更多
文摘In order to overcome the shortcoming of the classical Hungarian algorithm that it can only solve the problems where the total cost is the sum of that of each job, an improved Hungarian algorithm is proposed and used to solve the assignment problem of serial-parallel systems. First of all, by replacing parallel jobs with virtual jobs, the proposed algorithm converts the serial-parallel system into a pure serial system, where the classical Hungarian algorithm can be used to generate a temporal assignment plan via optimization. Afterwards, the assignment plan is validated by checking whether the virtual jobs can be realized by real jobs through local searching. If the assignment plan is not valid, the converted system will be adapted by adjusting the parameters of virtual jobs, and then be optimized again. Through iterative searching, the valid optimal assignment plan can eventually be obtained.To evaluate the proposed algorithm, the valid optimal assignment plan is applied to labor allocation of a manufacturing system which is a typical serial-parallel system.
文摘Traditional Hungarian method can only solve standard assignment problems, while can not solve competition assignment problems. This article emphatically discussed the difference between standard assignment problems and competition assignment problems. The kinds of competition assignment problem algorithms based on Hungarian method and the solutions of them were studied.
基金supported by the National Natural Science Foundation of China(61673209,71971115)。
文摘The dynamic weapon target assignment(DWTA)problem is of great significance in modern air combat.However,DWTA is a highly complex constrained multi-objective combinatorial optimization problem.An improved elitist non-dominated sorting genetic algorithm-II(NSGA-II)called the non-dominated shuffled frog leaping algorithm(NSFLA)is proposed to maximize damage to enemy targets and minimize the self-threat in air combat constraints.In NSFLA,the shuffled frog leaping algorithm(SFLA)is introduced to NSGA-II to replace the inside evolutionary scheme of the genetic algorithm(GA),displaying low optimization speed and heterogeneous space search defects.Two improvements have also been raised to promote the internal optimization performance of SFLA.Firstly,the local evolution scheme,a novel crossover mechanism,ensures that each individual participates in updating instead of only the worst ones,which can expand the diversity of the population.Secondly,a discrete adaptive mutation algorithm based on the function change rate is applied to balance the global and local search.Finally,the scheme is verified in various air combat scenarios.The results show that the proposed NSFLA has apparent advantages in solution quality and efficiency,especially in many aircraft and the dynamic air combat environment.
基金supported by the National Natural Science Foundation of China(71401106)the Innovation Program of Shanghai Municipal Education Commission(14YZ090)+4 种基金the Shanghai Natural Science Foundation(14ZR1418700)the Shanghai First-class Academic Discipline Project(S1201YLXK)the Hujiang Foundation of China(A14006)the grant S2009/esp-1594 from the Comunidad de Madrid(Spain)the grant MTM2012-36163-C06-06 from the Spanish government
文摘The semi-Lagrangian relaxation (SLR), a new exactmethod for combinatorial optimization problems with equality constraints,is applied to the quadratic assignment problem (QAP).A dual ascent algorithm with finite convergence is developed forsolving the semi-Lagrangian dual problem associated to the QAP.We perform computational experiments on 30 moderately difficultQAP instances by using the mixed integer programming solvers,Cplex, and SLR+Cplex, respectively. The numerical results notonly further illustrate that the SLR and the developed dual ascentalgorithm can be used to solve the QAP reasonably, but also disclosean interesting fact: comparing with solving the unreducedproblem, the reduced oracle problem cannot be always effectivelysolved by using Cplex in terms of the CPU time.
基金supported by the National Natural Science Foundation of China(61170161)the Natural Science Foundation of S handong (ZR2009GM002)the Technology Projects of Shandong University (J09LG01)
文摘A new troubleshooting algorithm for solving assignment problem based on existing algorithms is proposed, and an analysis on the related theory is given. By applying the new troubleshooting algorithm to the Lagrange relaxation algorithm of the multi-dimensional assignment problem of data association for multi-passive-sensor multi-target location systems, and comparing the simulation results with that of the Hungarian algorithm which is the classical optimal solving algorithm, and the multi-layer ordersearching algorithm which is a sub-optimal solving algorithm, the performance and applying conditions of the new algorithm are summarized. Theory analysis and simulation results prove the effectiveness and superiority of the new algorithm.
文摘In this paper we carried out a probabilistic analysis for a machine repair system with a general service-time distribution by means of generalized Markov renewal processes. Some formulas for the steady-state performance measures. such as the distribution of queue sizes, average queue length, degree of repairman utilization and so on. are then derived. Finally, the machine repair model and a multiple critcria decision-making method are applied to study machine assignment problem with a general service-time distribution to determine the optimum number of machines being serviced by one repairman.
文摘Considering the problem of multiple ballistic missiles tracking of boost-phase ballistic missile defense, a boost-phase tracking algorithm based on multiple hypotheses tracking (MHT) concept is proposed. This paper focuses on the tracking algo- rithm for hypothesis generation, hypothesis probability calculation, hypotheses reduction and pruning and other sectors. From an engineering point of view, a technique called the linear assignment problem (LAP) used in the implementation of M-best feasible hypotheses generation, the number of the hypotheses is relatively small compared with the total number that may exist in each scan, also the N-scan back pruning is used, the algorithm's efficiency and practicality have been improved. Monte Carlo simulation results show that the proposed algorithm can track the boost phase of multiple ballistic missiles and it has a good tracking performance compared with joint probability data association (JPDA).