Objective To evaluate the association of GGN repeat polymorphism of androgen receptor(AR)with ovarian reserve and ovarian response in controlled ovarian stimulation(COS).Methods This genetic association study was cond...Objective To evaluate the association of GGN repeat polymorphism of androgen receptor(AR)with ovarian reserve and ovarian response in controlled ovarian stimulation(COS).Methods This genetic association study was conducted among a total of 361 women aged≤40 years with basal FSH≤12 U/L undergoing the GnRH-agonist long protocol for COS in a university affiliated IVF center.GGN repeat in the AR gene was analyzed with Sanger sequencing.The primary endpoint was the number of antral follicle counts(AFCs),and the secondary endpoints were stimulation days,total dose of gonadotropin(Gn)used,total number of retrieved oocytes,ovarian sensitivity index,and follicular output rate.Results The GGN repeat in exon 1 of the AR gene ranged from 13 to 24,and the median repeat length was 22.Based on the genotypes(S for GGN repeats<22,L for GGN repeats≥22),the patients were divided into 3 groups:SS,SL,and LL.Generalized regression analysis indicated that the number of AFCs in group SS was significantly lower than those in group SL(adjusted β=1.8,95%CI:0.2-3.4,P=0.024)and group LL(adjusted β=1.5,95%CI:0.2-2.7,P=0.021).No significant difference was observed in the number of AFCs between group SL and group LL(P>0.05).Generalized regression analysis indicated no significant differences in ovarian stimulation parameters among the 3 groups,either before or after adjusting for confounding factors(P>0.05).Conclusion GGN repeat length on the AR gene is associated with AFC but not with ovarian response in Chinese women,indicating that AR gene polymorphisms may affect ovarian reserve.展开更多
OBJECTIVE TNF-related apoptosis-inducing ligand(TRAIL)is a promising cancer therapeutic agent due to its minimal toxicity to normal tissues and remarkable apoptotic activity in tumors.However,most breast cancer cells ...OBJECTIVE TNF-related apoptosis-inducing ligand(TRAIL)is a promising cancer therapeutic agent due to its minimal toxicity to normal tissues and remarkable apoptotic activity in tumors.However,most breast cancer cells are resistant to TRAIL-induced apoptosis.Our objectives are to investigate the underlying molecular mechanisms and to develop strategies to overcome such resistance.METHODS To identify modulators of TRAIL-induced apoptosis,we carried out a genome wide si RNA screen.To validate the screening result,we either silenced or overexpressed the identified genes in various breast cancer cells and changes in growth and TRAIL-induced cell apoptosis were determined in vitro and in an orthotopic xenograft mouse model.Finally,we investigated whether small molecules targeting the identified genes improve the effectiveness of TRAIL-therapy.RESULTS We unexpectedly identified androgen receptor(AR)to be responsible for TRAIL resistance.While AR is classically viewed as the key factor in prostate cancer progression,we found that AR expression levels were markedly elevated in human invasive breast cancer specimens including triple-negative breast cancers(TNBC)that are highly aggressive with poor prognosis.Importantly,breast cancer cell lines express different levels of AR that correlated with their TRAIL resistance.AR overexpression in MDA-MB-231 and MDA-MB-436 cells suppressed the TRAIL sensitivity whereas knockdown of AR rendered MCF-7 and MDA-MB-453 cells sensitive to TRAIL-induced apoptosis.AR overexpression also induced TRAIL resistance in breast tumors in vivo.Further,we observed an upregulation of the TRAIL receptor,death receptor 5(DR5)in breast cancer cells,following the removal or inhibition of AR by its antagonists Casodex and MDV3100.Treatment with AR antagonists also enhanced TRAIL-induced breast cancer cell apoptosis.CONCLUSION AR signaling suppresses TRAIL-induced breast cancer cell apoptosis,in part,by suppressing DR5 expression,and a combination of AR antagonists together with TRAIL may be a novel and effective therapy for TNBC.展开更多
文摘Objective To evaluate the association of GGN repeat polymorphism of androgen receptor(AR)with ovarian reserve and ovarian response in controlled ovarian stimulation(COS).Methods This genetic association study was conducted among a total of 361 women aged≤40 years with basal FSH≤12 U/L undergoing the GnRH-agonist long protocol for COS in a university affiliated IVF center.GGN repeat in the AR gene was analyzed with Sanger sequencing.The primary endpoint was the number of antral follicle counts(AFCs),and the secondary endpoints were stimulation days,total dose of gonadotropin(Gn)used,total number of retrieved oocytes,ovarian sensitivity index,and follicular output rate.Results The GGN repeat in exon 1 of the AR gene ranged from 13 to 24,and the median repeat length was 22.Based on the genotypes(S for GGN repeats<22,L for GGN repeats≥22),the patients were divided into 3 groups:SS,SL,and LL.Generalized regression analysis indicated that the number of AFCs in group SS was significantly lower than those in group SL(adjusted β=1.8,95%CI:0.2-3.4,P=0.024)and group LL(adjusted β=1.5,95%CI:0.2-2.7,P=0.021).No significant difference was observed in the number of AFCs between group SL and group LL(P>0.05).Generalized regression analysis indicated no significant differences in ovarian stimulation parameters among the 3 groups,either before or after adjusting for confounding factors(P>0.05).Conclusion GGN repeat length on the AR gene is associated with AFC but not with ovarian response in Chinese women,indicating that AR gene polymorphisms may affect ovarian reserve.
基金supported by National Institutes of Health(R21CA193271 and R01HL116849)National Natural Science Foundation of China(31100595 and 31300683)
文摘OBJECTIVE TNF-related apoptosis-inducing ligand(TRAIL)is a promising cancer therapeutic agent due to its minimal toxicity to normal tissues and remarkable apoptotic activity in tumors.However,most breast cancer cells are resistant to TRAIL-induced apoptosis.Our objectives are to investigate the underlying molecular mechanisms and to develop strategies to overcome such resistance.METHODS To identify modulators of TRAIL-induced apoptosis,we carried out a genome wide si RNA screen.To validate the screening result,we either silenced or overexpressed the identified genes in various breast cancer cells and changes in growth and TRAIL-induced cell apoptosis were determined in vitro and in an orthotopic xenograft mouse model.Finally,we investigated whether small molecules targeting the identified genes improve the effectiveness of TRAIL-therapy.RESULTS We unexpectedly identified androgen receptor(AR)to be responsible for TRAIL resistance.While AR is classically viewed as the key factor in prostate cancer progression,we found that AR expression levels were markedly elevated in human invasive breast cancer specimens including triple-negative breast cancers(TNBC)that are highly aggressive with poor prognosis.Importantly,breast cancer cell lines express different levels of AR that correlated with their TRAIL resistance.AR overexpression in MDA-MB-231 and MDA-MB-436 cells suppressed the TRAIL sensitivity whereas knockdown of AR rendered MCF-7 and MDA-MB-453 cells sensitive to TRAIL-induced apoptosis.AR overexpression also induced TRAIL resistance in breast tumors in vivo.Further,we observed an upregulation of the TRAIL receptor,death receptor 5(DR5)in breast cancer cells,following the removal or inhibition of AR by its antagonists Casodex and MDV3100.Treatment with AR antagonists also enhanced TRAIL-induced breast cancer cell apoptosis.CONCLUSION AR signaling suppresses TRAIL-induced breast cancer cell apoptosis,in part,by suppressing DR5 expression,and a combination of AR antagonists together with TRAIL may be a novel and effective therapy for TNBC.