期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
采用实测数据和主成分分析的直流输电线路故障识别方法 被引量:19
1
作者 束洪春 田鑫萃 安娜 《电力系统自动化》 EI CSCD 北大核心 2016年第21期203-209,共7页
由平波电抗器和直流滤波器构成的直流输电线路两端实体电气边界具有高频阻塞作用,使得线路外部故障下,其故障电压起始变化平缓、幅值小;在线路内部故障下,其故障电压起始变化陡峭、幅值大、长时窗时域波形有振荡。利用主成分分析(PCA)... 由平波电抗器和直流滤波器构成的直流输电线路两端实体电气边界具有高频阻塞作用,使得线路外部故障下,其故障电压起始变化平缓、幅值小;在线路内部故障下,其故障电压起始变化陡峭、幅值大、长时窗时域波形有振荡。利用主成分分析(PCA)方法提取线路内部、外部故障下的极线电压曲线簇样本数据蕴含的此种时域特征信息,并将其投影到主元空间,形成由cPC1和cPC2坐标构成的PCA空间(元件),其线路内、外部故障呈现为具有显著区别的两个不同聚类点簇团,借此可实现直流线路内部故障和外部故障的表征和甄别。故障发生后,利用故障数据于PCA故障识别元件的投影点与PCA识别元件本身多个聚类中心之间的欧氏距离来自适应地判别线路内、外部故障。经大量实测数据试验表明,该方法改善现行以du/dt为核心的直流线路行波保护的性能,若将直流系统历史故障数据复用来增加PCA的聚类点簇,则可继续完善PCA故障识别元件。 展开更多
关键词 ±800kV直流输电系统 实测故障数据 直流线路电气边界 故障模态 主成分分析
在线阅读 下载PDF
基于小波分解和GDI的动力电池故障诊断 被引量:2
2
作者 刘光军 张恒 《电池》 CAS 北大核心 2023年第2期165-168,共4页
在动力电池组故障早期准确地定位故障单体电池,能预防安全事故。提出基于小波分解和广义无量纲指标(GDI)的动力电池故障诊断方法。使用小波分解,从电压数据中提取稳定的趋势分量;使用自定义的GDI提取故障信息;使用微分法处理故障信息,... 在动力电池组故障早期准确地定位故障单体电池,能预防安全事故。提出基于小波分解和广义无量纲指标(GDI)的动力电池故障诊断方法。使用小波分解,从电压数据中提取稳定的趋势分量;使用自定义的GDI提取故障信息;使用微分法处理故障信息,排除电池组不一致的情况,并使用3-σ原则作为故障触发阈值。基于电动汽车实际运行数据的实验结果表明,所提方法较信息熵法准确性更高,且具有较强的鲁棒性,在故障早期能够准确地定位故障单体电池,并降低电池组不一致故障的误报率。 展开更多
关键词 实际运行数据 故障诊断 小波分解 广义无量纲指标(GDI) 动力电池
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部