期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Sequential quadratic programming-based non-cooperative target distributed hybrid processing optimization method 被引量:3
1
作者 SONG Xiaocheng WANG Jiangtao +3 位作者 WANG Jun SUN Liang FENG Yanghe LI Zhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期129-140,共12页
The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense ... The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples. 展开更多
关键词 non-cooperative target distributed hybrid processing multiple constraint minimum defense cost sequential quadratic programming
在线阅读 下载PDF
Successive quadratic programming multiuser detector
2
作者 Mu Xuewen Zhang Yaling Liu Sanyang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期8-13,共6页
Based on the semidefinite programming relaxation of the CDMA maximum likelihood multiuser detection problem, a detection strategy by the successive quadratic programming algorithm is presented. Coupled with the random... Based on the semidefinite programming relaxation of the CDMA maximum likelihood multiuser detection problem, a detection strategy by the successive quadratic programming algorithm is presented. Coupled with the randomized cut generation scheme, the suboptimal solution of the multiuser detection problem in obtained. Compared to the interior point methods previously reported based on semidefmite programming, simulations demonstrate that the successive quadratic programming algorithm often yields the similar BER performances of the multiuser detection problem. But the average CPU time of this approach is significantly reduced. 展开更多
关键词 Code division multiple access Multiuser detection Semidefinite programming Successive quadratic programming.
在线阅读 下载PDF
Automatic differentiation for reduced sequential quadratic programming
3
作者 Liao Liangcai Li Jin Tan Yuejin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期57-62,共6页
In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD)... In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself. 展开更多
关键词 Automatic differentiation Reduced sequential quadratic programming Optimization algorithm
在线阅读 下载PDF
Orthogonal genetic algorithm for solving quadratic bilevel programming problems 被引量:4
4
作者 Hong Li Yongchang Jiao Li Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期763-770,共8页
A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encod... A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations. 展开更多
关键词 orthogonal genetic algorithm quadratic bilevel programming problem Karush-Kuhn-Tucker conditions orthogonal experimental design global optimal solution.
在线阅读 下载PDF
New approach to training support vector machine 被引量:10
5
作者 Tang Faming Chen Mianyun Wang Zhongdong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期200-205,219,共7页
Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very la... Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very large quadratic programming problem. Traditional optimization methods cannot be directly applied due to memory restrictions. Up to now, several approaches exist for circumventing the above shortcomings and work well. Another learning algorithm, particle swarm optimization, for training SVM is introduted. The method is tested on UCI datasets. 展开更多
关键词 support vector machine quadratic programming problem particle swarm optimization.
在线阅读 下载PDF
A novel PID controller tuning method based on optimization technique 被引量:5
6
作者 梁昔明 李山春 HASSAN A B 《Journal of Central South University》 SCIE EI CAS 2010年第5期1036-1042,共7页
An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) ... An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems. 展开更多
关键词 PID controller optimization infeasible interior point method sequential quadratic programming SIMULATION
在线阅读 下载PDF
A new hybrid algorithm for global optimization and slope stability evaluation 被引量:3
7
作者 Taha Mohd Raihan Khajehzadeh Mohammad Eslami Mahdiyeh 《Journal of Central South University》 SCIE EI CAS 2013年第11期3265-3273,共9页
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a... A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems. 展开更多
关键词 gravitational search algorithm sequential quadratic programming hybrid algorithm global optimization slope stability
在线阅读 下载PDF
Compliant landing of a trotting quadruped robot based on hybrid motion/force robust control 被引量:2
8
作者 郎琳 王剑 +1 位作者 韦庆 马宏绪 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1970-1980,共11页
A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landi... A compliant landing strategy for a trotting quadruped robot on unknown rough terrains based on contact force control is presented. Firstly, in order to lower the disturbance caused by the landing impact force, a landing phase is added between the swing phase and the stance phase, where the desired contact force is set as a small positive constant. Secondly, the joint torque optimization of the stance legs is formulated as a quadratic programming(QP) problem subject to equality and inequality/bound constraints. And a primal-dual dynamical system solver based on linear variational inequalities(LVI) is applied to solve this QP problem. Furthermore, based on the optimization results, a hybrid motion/force robust controller is designed to realize the tracking of the contact force, while the constraints of the stance feet landing angles are fulfilled simultaneously. Finally, the experiments are performed to validate the proposed methods. 展开更多
关键词 trotting quadruped robots compliant landing joint torque optimization quadratic programming(QP) hybrid motion/force robust control
在线阅读 下载PDF
Shape-sizing nested optimization of deployable structures using SQP 被引量:1
9
作者 戴璐 关富玲 《Journal of Central South University》 SCIE EI CAS 2014年第7期2915-2920,共6页
The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by... The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs. 展开更多
关键词 deployable structures OPTIMIZATION minimum mass dynamic constraints SQP(sequential quadratic programming algorithm
在线阅读 下载PDF
Wavelet-Based Fractal Function Approximation 被引量:1
10
作者 Zhang Hejei Tao Ran Zhou Siyong & Wang Yue(Department of Electronic Engineering, Beijing Institute of Technology, 100081, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第4期60-66,共7页
In this paper, we study on the application of radical B-spline wavelet scaling function in fractal function approximation system. The paper proposes a wavelet-based fractal function approximation algorithm in which th... In this paper, we study on the application of radical B-spline wavelet scaling function in fractal function approximation system. The paper proposes a wavelet-based fractal function approximation algorithm in which the coefficients can be determined by solving a convex quadraticprogramming problem. And the experiment result shows that the approximation error of this algorithm is smaller than that of the polynomial-based fractal function approximation. This newalgorithm exploits the consistency between fractal and scaling function in multi-scale and multiresolution, has a better approximation effect and high potential in data compression, especially inimage compression. 展开更多
关键词 B-SPLINE Wavelet scaling function Fractal function APPROXIMATION quadratic programming.
在线阅读 下载PDF
Stabilizing model predictive control scheme for piecewise affine systems with maximal positively invariant terminal set
11
作者 Fu Chen Guangzhou Zhao Xiaoming Yu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1090-1094,共5页
An efficient algorithm is proposed for computing the solution to the constrained finite time optimal control (CFTOC) problem for discrete-time piecewise affine (PWA) systems with a quadratic performance index. The... An efficient algorithm is proposed for computing the solution to the constrained finite time optimal control (CFTOC) problem for discrete-time piecewise affine (PWA) systems with a quadratic performance index. The maximal positively invariant terminal set, which is feasible and invariant with respect to a feedback control law, is computed as terminal target set and an associated Lyapunov function is chosen as terminal cost. The combination of these two components guarantees constraint satisfaction and closed-loop stability for all time. The proposed algorithm combines a dynamic programming strategy with a multi-parametric quadratic programming solver and basic polyhedral manipulation. A numerical example shows that a larger stabilizable set of states can be obtained by the proposed algorithm than precious work. 展开更多
关键词 constrained optimal predictive control multi-parametric quadratic programming dynamic programming receding horizon control positively invariant set.
在线阅读 下载PDF
Generalized weighted functional proportional mean combining forecasting model and its method of parameter estimation
12
作者 万玉成 盛昭潮 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第1期7-11,18,共6页
A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadr... A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadratic programming is given. This model has extensive representation. It is a new kind of aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and seeking the optimal parameter, the optimal combining form can be obtained and the forecasting accuracy can be improved. The effectiveness of this model is demonstrated by an example. 展开更多
关键词 combining forecasting generalized weighted functional proportional mean parameter estimation quadratic programming
在线阅读 下载PDF
A joint optimization algorithm for focused energy delivery in precision electronic warfare 被引量:5
13
作者 Zhong-ping Yang Shu-ning Yang +3 位作者 Qing-song Zhou Jian-yun Zhang Zhi-hui Li Zhong-rui Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期709-721,共13页
Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization mode... Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization model with respect to the locations of the array and the transmitted signals to improve the performance of FED.As the problem is nonconvex and NP-hard,particle swarm optimization(PSO) is adopted to solve the locations of the array,while designing the transmitted signals under a feasible array is considered as a unimodular quadratic program(UQP) subproblem to calculate the fitness criterion of PSO.In the PSO-UQP framework established,two methods are presented for the UQP subproblem,which are more efficient and more accurate respectively than previous works.Furthermore,a threshold value is set in the framework to determine which method to adopt to take full advantages of the methods above.Meanwhile,we obtain the maximum localization error that FED can tolerate,which is significant for implementing FED in practice.Simulation results are provided to demonstrate the effectiveness of the joint optimization algorithm,and the correctness of the maximum localization error derived. 展开更多
关键词 Focused energy delivery Localization error Particle swarm optimization Precision electronic warfare Unimodular quadratic program
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部