期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
Controllability and observability of networked control systems with time-varying delays 被引量:2
1
作者 Li Jinna Zhang Qingling Li Yuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期800-806,共7页
The controllability and observability of networked control systems are studied. Aiming at the networked control system with time-varying delay, the sufficient and necessary conditions for complete controllability and ... The controllability and observability of networked control systems are studied. Aiming at the networked control system with time-varying delay, the sufficient and necessary conditions for complete controllability and complete observability of the system are presented, respectively. Because of Markov characteristic of the network-induced delay, in terms of stochastic theory, a sufficient and necessary condition for completely mean value controllability of networked control systems is obtained. Further, the conditions that the controllability and observability of networked control systems are equivalent to the initial time-invariant system are given. Controllability and observability realization indexes are also discussed, respectively. The numerical example demonstrates the effectiveness of the proposed theory. 展开更多
关键词 networked control system CONTROLLABILITY observability controllability realization index observability realization index.
在线阅读 下载PDF
Optimal maneuvering strategy of spacecraft evasion based on angles-only measurement and observability analysis 被引量:4
2
作者 ZHANG Yijie WANG Jiongqi +2 位作者 HOU Bowen WANG Dayi CHEN Yuyun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期172-184,共13页
Spacecraft orbit evasion is an effective method to ensure space safety. In the spacecraft’s orbital plane, the space non-cooperate target with autonomous approaching to the spacecraft may have a dangerous rendezvous.... Spacecraft orbit evasion is an effective method to ensure space safety. In the spacecraft’s orbital plane, the space non-cooperate target with autonomous approaching to the spacecraft may have a dangerous rendezvous. To deal with this problem, an optimal maneuvering strategy based on the relative navigation observability degree is proposed with angles-only measurements. A maneuver evasion relative navigation model in the spacecraft’s orbital plane is constructed and the observability measurement criteria with process noise and measurement noise are defined based on the posterior Cramer-Rao lower bound. Further, the optimal maneuver evasion strategy in spacecraft’s orbital plane based on the observability is proposed. The strategy provides a new idea for spacecraft to evade safety threats autonomously. Compared with the spacecraft evasion problem based on the absolute navigation, more accurate evasion results can be obtained. The simulation indicates that this optimal strategy can weaken the system’s observability and reduce the state estimation accuracy of the non-cooperative target, making it impossible for the non-cooperative target to accurately approach the spacecraft. 展开更多
关键词 rendezvous evasion orbit maneuver angles-only measurement observability degree posterior Cramer-Rao lower bound
在线阅读 下载PDF
Self-alignment of full skewed RSINS: observability analysis and full-observable Kalman filter 被引量:3
3
作者 Lailiang Song Chunxi Zhang Jiazhen Lu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期104-114,共11页
Traditional orthogonal strapdown inertial navigation sys-tem (SINS) cannot achieve satisfactory self-alignment accuracy in the stationary base: taking more than 5 minutes and al the iner-tial sensors biases cannot ... Traditional orthogonal strapdown inertial navigation sys-tem (SINS) cannot achieve satisfactory self-alignment accuracy in the stationary base: taking more than 5 minutes and al the iner-tial sensors biases cannot get ful observability except the up-axis accelerometer. However, the ful skewed redundant SINS (RSINS) can not only enhance the reliability of the system, but also improve the accuracy of the system, such as the initial alignment. Firstly, the observability of the system state includes attitude errors and al the inertial sensors biases are analyzed with the global perspective method: any three gyroscopes and three accelerometers can be assembled into an independent subordinate SINS (sub-SINS);the system state can be uniquely confirmed by the coupling connec-tions of al the sub-SINSs;the attitude errors and random constant biases of al the inertial sensors are observable. However, the ran-dom noises of the inertial sensors are not taken into account in the above analyzing process. Secondly, the ful-observable Kalman filter which can be applied to the actual RSINS containing random noises is established; the system state includes the position, ve-locity, attitude errors of al the sub-SINSs and the random constant biases of the redundant inertial sensors. At last, the initial self-alignment process of a typical four-redundancy ful skewed RSINS is simulated: the horizontal attitudes (pitch, rol ) errors and yaw error can be exactly evaluated within 80 s and 100 s respectively, while the random constant biases of gyroscopes and accelero-meters can be precisely evaluated within 120 s. For the ful skewed RSINS, the self-alignment accuracy is greatly improved, mean-while the self-alignment time is widely shortened. 展开更多
关键词 global perspective redundant strapdown inertial navigation system (RSINS) SELF-ALIGNMENT observability analysis Kalman filter.
在线阅读 下载PDF
Observability and estimability of passive radar with unknown illuminator states using different observations 被引量:2
4
作者 JING Tong TIAN Wei +1 位作者 HUANG Gaoming PENG Huafu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1193-1205,共13页
Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research... Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research has studied this problem.This paper analyzes the observability and estimability for passive radar systems with unknown IO states under three typical scenarios.Besides,the directions of high and low estimability with respect to various states are given.Moreover,two types of observations are taken into account.The effects of different observations on both observability and estimability are well analyzed.For the observability test,linear and nonlinear methods are considered,which proves that both tests are applicable to the system.Numerical simulations confirm the correctness of the theoretical analysis. 展开更多
关键词 passive radar passive coherent location(PCL) observability ESTIMABILITY unknown illuminator states
在线阅读 下载PDF
Optimal maneuver strategy to improve the observability of angles-only rendezvous 被引量:1
5
作者 DU Ronghua LIAO Wenhe ZHANG Xiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期1020-1032,共13页
This paper proposes an optimal maneuver strategy to improve the observability of angles-only rendezvous from the perspective of relative navigation.A set of dimensionless relative orbital elements(ROEs)is used to para... This paper proposes an optimal maneuver strategy to improve the observability of angles-only rendezvous from the perspective of relative navigation.A set of dimensionless relative orbital elements(ROEs)is used to parameterize the relative motion,and the objective function of the observability of anglesonly navigation is established.An analytical solution of the optimal maneuver strategy to improve the observability of anglesonly navigation is obtained by means of numerical analysis.A set of dedicated semi-physical simulation system is built to test the performances of the proposed optimal maneuver strategy.Finally,the effectiveness of the method proposed in this paper is verified through the comparative analysis of the objective function of the observability of angles-only navigation and the performances of the angles-only navigation filter under different maneuver schemes.Compared with the cases without orbital maneuver,it is concluded that the tangential filtering accuracy with the optimal orbital maneuver at the terminal time is increased by 35%on average,and the radial and normal filtering accuracy is increased by 30%on average. 展开更多
关键词 angles-only navigation observability optimal maneuver orbital rendezvous
在线阅读 下载PDF
Observability analysis of feature aided terminal guidance systems
6
作者 Shijie Fan Hongqi Fan +2 位作者 Huaitie Xiao Jianpeng Fan Qiang Fu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期127-133,共7页
Feature aided design of estimators and guidance laws can significantly improve the interception performance of the terminal guidance system. The achieved enhancement can be effectively assessed by observability analys... Feature aided design of estimators and guidance laws can significantly improve the interception performance of the terminal guidance system. The achieved enhancement can be effectively assessed by observability analysis methods. This paper first analyzes and discusses the existing assessment methods in a typical endgame scenario with target orientation observations. To get over their deficiencies, a novel singular value decomposition(SVD) method is proposed. Employing both theoretical analysis and numerical simulation, the proposed method can represent the degree of state observability which is enhanced by integrating target features more completely and quantitatively. 展开更多
关键词 terminal guidance feature aided observability singular value orientation observation
在线阅读 下载PDF
A unified approach of observability analysis for airborne SLAM
7
作者 方强 黄新生 《Journal of Central South University》 SCIE EI CAS 2013年第9期2432-2439,共8页
An unmanned aerial vehicle (UAV) is arranged to explore an unknown environment and to map the features it finds when GPS is denied.It navigates using a statistical estimation technique known as simultaneous localiza... An unmanned aerial vehicle (UAV) is arranged to explore an unknown environment and to map the features it finds when GPS is denied.It navigates using a statistical estimation technique known as simultaneous localization and mapping (SLAM) which allows for the simultaneous estimation of the location of the UAV as well as the location of the features it sees.Obscrvability is a key aspect of the state estimation problem of SLAM.However,the dimension and variables of SLAM system might be changed with new features.To solve this issue,a unified approach of observability analysis for SLAM system is provided,through reorganizing the system model.The dimension and variables of SLAM system keep steady,then the PWCS theory can be used to analyze the local or total observability,and under special maneuver,some system states,such as the yaw angle,become observable.Simulation results validate the proposed method. 展开更多
关键词 unmanned aerial vehicle (UAV) simultaneous localization and mapping (SLAM) inertial navigation system (INS) observability extend Kalman filter (EKF)
在线阅读 下载PDF
Design and implementation of disturbance sliding mode observer for enhancing the dynamic control precision of inertial stabilization platform
8
作者 ZHANG Zhidong YANG Gongliu +2 位作者 CAI Qingzhong FAN Jing LI Tao 《Journal of Systems Engineering and Electronics》 2025年第3期791-802,共12页
In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.T... In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering. 展开更多
关键词 inertial stabilization platform disturbance suppression sliding mode observer robust control
在线阅读 下载PDF
Distributed event-triggered control for UAV swarm target fencing with network connectivity preservation and collision avoidance
9
作者 Xiuxia Yang Hao Yu +1 位作者 Yi Zhang Wenqiang Yao 《Defence Technology(防务技术)》 2025年第8期412-427,共16页
This paper proposes a distributed event-triggered control(ETC)framework to address cooperative target fencing challenges in UAV swarm.The proposed architecture eliminates the reliance on preset formation parameters wh... This paper proposes a distributed event-triggered control(ETC)framework to address cooperative target fencing challenges in UAV swarm.The proposed architecture eliminates the reliance on preset formation parameters while achieving multi-objective cooperative control for target fencing,network connectivity preservation,collision avoidance,and communication efficiency optimization.Firstly,a differential state observer is constructed to obtain the target's unmeasurable states.Secondly,leveraging swarm selforganization principles,a geometric-constraint-free distributed fencing controller is designed by integrating potential field methods with consensus theory.The controller dynamically adjusts inter-UAV distances via single potential function,enabling coordinated optimization of persistent network connectivity and collision-free motion during target fencing.Thirdly,a dual-threshold ETC mechanism based on velocity consensus deviation and fencing error is proposed,which can be triggered based on task features to dynamically adjust the communication frequency,significantly reduce the communication burden and exclude Zeno behavior.Theoretical analysis demonstrates the stability of closed-loop systems.Multi-scenario simulations show that the proposed method can achieve robust fencing under target maneuverability,partial UAV failures,and communication disturbances. 展开更多
关键词 Dual-threshold ETC mechanism UAV swarm Cooperative control Distributed control Target fencing Differential state observer
在线阅读 下载PDF
Non-singular fast terminal sliding mode control for roll-pitch seeker based on extended state observers
10
作者 XIAO Bowen XIA Qunli 《Journal of Systems Engineering and Electronics》 2025年第2期537-551,共15页
For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode contr... For air-to-air missiles, the terminal guidance’s preci-sion is directly contingent upon the tracking capabilities of the roll-pitch seeker. This paper presents a combined non-singular fast terminal sliding mode control method, aimed at resolving the frame control problem of roll-pitch seeker tracking high maneu-vering target. The sliding mode surface is structured around the principle of segmentation, which enables the control system’s rapid attainment of the zero point and ensure global fast conver-gence. The system’s state is more swiftly converged to the slid-ing mode surface through an improved adaptive fast dual power reaching law. Utilizing an extended state observer, the overall disturbance is both identified and compensated. The validation of the system’s stability and its convergence within a finite-time is grounded in Lyapunov’s stability criteria. The performance of the introduced control method is confirmed through roll-pitch seeker tracking control simulation. Data analysis reveals that newly proposed control technique significantly outperforms existing sliding mode control methods by rapidly converging the frame to the target angle, reduce the tracking error of the detec-tor for the target, and bolster tracking precision of the roll-pitch seeker huring disturbed conditions. 展开更多
关键词 air-to-air missile roll-pitch seeker finite-time con-vergence combined sliding mode control extended state observer
在线阅读 下载PDF
Three-dimensional finite-time optimal cooperative guidance with integrated information fusion observer
11
作者 Yiao Zhan Linwei Wang Di Zhou 《Defence Technology(防务技术)》 2025年第4期12-28,共17页
Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte... Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios. 展开更多
关键词 Anti-saturation predefined-time observer Nonlinear finite-time optimal control Three-dimensional guidance Information fusion
在线阅读 下载PDF
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles
12
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Accurately tracking hypersonic gliding vehicles via an LEO mega-constellation in relay tracking mode
13
作者 LI Zhao WANG Yidi ZHENG Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期211-221,共11页
In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the ... In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the developing megaconstellations in low-Earth orbit,this paper proposes a relay tracking mode to track HGVs to overcome the above problem.The whole tracking mission is composed of several tracking intervals with the same duration.Within each tracking interval,several appropriate satellites are dispatched to track the HGV.Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion.The tracking performances of the proposed tracking mode and the other two traditional tracking modes,including the stare and track-rate modes,are compared by simulation.The results show that the relay tracking mode can track the whole trajectory of a HGV,while the stare mode can only provide a very short tracking arc.Moreover,the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode. 展开更多
关键词 target tracking mega-constellation hypersonic gliding vehicle(HGV) sensor selection observability analysis
在线阅读 下载PDF
A guidance and control design with reduced information for a dual-spin stabilized projectile 被引量:2
14
作者 Yu Wang Jiyan Yu +1 位作者 Xiaoming Wang Jia Fangxiu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期494-505,共12页
In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constrain... In this paper,an integrated guidance and control method based on an adaptive path-following controller is proposed to control a spin-stabilized projectile with only translational motion information under the constraint of an actuator,uncertainties in aerodynamic parameters and measurements,and control system complexity.Owing to the fairly high rotation speed,the dynamic model of this missile is strongly nonlinear,uncertain and coupled in pitch,yaw and roll channels.A theoretical equivalent resultant force and uncertainty compensation method are comprehensively used to realize decoupling of pitch and yaw.In response to the strong nonlinear and time-varying characteristics of the dynamic system,the quasi-linear model whose parameters are obtained by interpolation of points selected as the segmentation points in the trajectory envelope,is used for calculation in each step.To cope with the system uncertainty caused by model approximation,parameter uncertainty and ballistic interference,an extended state estimator is used to compensate the output feedback according to the test ballistic angle.In order to improve the tracking efficiency and ensure the tracking error convergence with only translational motion information,the virtual guide point,whose derivative is deduced according to the Lyapunov principle,is calculated in real time according to the projection relationship between the real-time position and the reference trajectory,and a virtual line-of-sight angle and the backstepping method are used for the design of the guidance and control system.In order to avoid the influence of control input saturation on the guidance and control performance due to the actuator limitation and improve the robustness of the system,an anti-saturation compensator is designed according to the two-step method.The feasibility and effectiveness of the path-following controller is verified through closed-loop flight simulations with measurement,control,and condition uncertainties.The results indicate that the designed controller can converge to the reference path and evidently decrease the distance between the impact point and target under different uncertainties. 展开更多
关键词 Spin-stabilized projectile Reduced information Path-following control Extended state observer Coupled nonlinear system Input saturation
在线阅读 下载PDF
Design of integral sliding mode guidance law based on disturbance observer 被引量:2
15
作者 ZHOU Jianping ZHANG Wenjie +2 位作者 ZHOU Hang LI Qiang XIA Qunli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期186-194,共9页
With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even elimina... With the increasing precision of guidance,the impact of autopilot dynamic characteristics and target maneuvering abilities on precision guidance is becoming more and more significant.In order to reduce or even eliminate the autopilot dynamic operation and the target maneuvering influence,this paper suggests a guidance system model involving a novel integral sliding mode guidance law(ISMGL).The method utilizes the dynamic characteristics and the impact angle,combined with a sliding mode surface scheme that includes the desired line-ofsight angle,line-of-sight angular rate,and second-order differential of the angular line-of-sight.At the same time,the evaluation scenario considere the target maneuvering in the system as the external disturbance,and the non-homogeneous disturbance observer estimate the target maneuvering as a compensation of the guidance command.The proposed system’s stability is proven based on the Lyapunov stability criterion.The simulations reveale that ISMGL effectively intercepted large maneuvering targets and present a smaller miss-distance compared with traditional linear sliding mode guidance laws and trajectory shaping guidance laws.Furthermore,ISMGL has a more accurate impact angle and fast convergence speed. 展开更多
关键词 disturbance observer pilot dynamics integral sliding mode impact angle constraint maneuvering target
在线阅读 下载PDF
Observer-based robust high-order fully actuated attitude autopilot design for spinning glide-guided projectiles 被引量:2
16
作者 Wei Wang Yuchen Wang +2 位作者 Shiwei Chen Yongcang Guo Zhongjiao Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期282-294,共13页
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor... This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations. 展开更多
关键词 Spinning glide-guided projectile Attitude control Sliding mode disturbance observer Fixed-time stable theory High-order fully actuated approach
在线阅读 下载PDF
Disturbances rejection optimization based on improved two-degree-of-freedom LADRC for permanent magnet synchronous motor systems 被引量:2
17
作者 Chenggang Wang Jianhu Yan +2 位作者 Wenlong Li Liang Shan Le Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期518-531,共14页
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba... Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system. 展开更多
关键词 Permanent magnet synchronous motor(PMSM) Active disturbance rejection control(ADRC) Disturbance observer Two-degree-of-freedom control ANTI-DISTURBANCE
在线阅读 下载PDF
Distributed Multicircular Circumnavigation Control for UAVs with Desired Angular Spacing 被引量:1
18
作者 Shixiong Li Xingling Shao +1 位作者 Wendong Zhang Qingzhen Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期429-446,共18页
This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premi... This paper addresses a multicircular circumnavigation control for UAVs with desired angular spacing around a nonstationary target.By defining a coordinated error relative to neighboring angular spacing,under the premise that target information is perfectly accessible by all nodes,a centralized circular enclosing control strategy is derived for multiple UAVs connected by an undirected graph to allow for formation behaviors concerning the moving target.Besides,to avoid the requirement of target’s states being accessible for each UAV,fixed-time distributed observers are introduced to acquire the state estimates in a fixed-time sense,and the upper boundary of settling time can be determined offline irrespective of initial properties,greatly releasing the burdensome communication traffic.Then,with the aid of fixed-time distributed observers,a distributed circular circumnavigation controller is derived to force all UAVs to collaboratively evolve along the preset circles while keeping a desired angular spacing.It is inferred from Lyapunov stability that all errors are demonstrated to be convergent.Simulations are offered to verify the utility of proposed protocol. 展开更多
关键词 Angular spacing Distributed observer Multicircular circumnavigation Moving target UAVS
在线阅读 下载PDF
Recent Progress of Earth Observation Satellites in China 被引量:1
19
作者 HUANG Shusong QI Wenping +3 位作者 ZHANG Shuai XIA Tian WANG Jingqiao ZENG Yong 《空间科学学报》 CAS CSCD 北大核心 2024年第4期731-740,共10页
Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges... Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage. 展开更多
关键词 China Earth Observation Satellites Satellite operation Data archiving Data distribution Data coverage
在线阅读 下载PDF
Model-driven full system dynamics estimation of PMSM-driven chain shell magazine 被引量:1
20
作者 Kai Wei Longmiao Chen Quan Zou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期147-156,共10页
Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is pro... Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals. 展开更多
关键词 Chain shell magazine Full system dynamics estimation Disturbance estimation Parameter estimation Adaptive extended state observer
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部