Sr0.6 Ba0.4 Nb2 O6 micro-rods are prepared by the molten-salt method with K2 SO4,KCl-K2 SO4,and KCl as fluxes.It reveals that the Sr0.6 Ba0.4 Nb2 O6 synthesized with KCl as a flux exhibits a single phase with tetragon...Sr0.6 Ba0.4 Nb2 O6 micro-rods are prepared by the molten-salt method with K2 SO4,KCl-K2 SO4,and KCl as fluxes.It reveals that the Sr0.6 Ba0.4 Nb2 O6 synthesized with KCl as a flux exhibits a single phase with tetragonal tungsten bronze structure.The measurement of X-ray diffraction indicates that the Sr0.6 Ba0.4 Nb2 O6 micro-rods synthesized at 1 300℃are anisotropic.The morphology of the powers is examined by transmission electron microscope.It reveals that the length-diameter ratio of Sr0.6 Ba0.4 Nb2 O6 micro-rods increases with increasing annealing temperature from 900℃to 1 300℃.At 1 300℃,the rod possesses a large length-diameter ratio of 8∶1.Moreover,the analysis of the piezoelectric properties of single micro-rods using apiezo-response force microscope indicates that the domains of the material are arranged along its radial direction.展开更多
The fluoride volatility method (FVM) is a technique tailored to separate uranium from fuel salt of molten salt reactors. A key challenge in R&D of the FVM is corrosion due to the presence of molten salt and corros...The fluoride volatility method (FVM) is a technique tailored to separate uranium from fuel salt of molten salt reactors. A key challenge in R&D of the FVM is corrosion due to the presence of molten salt and corrosive gases at high temperature. In this work, a frozen-wall technique was proposed to produce a physical barrier between construction materials and corrosive reactants. The protective performance of the frozen wall against molten salt was assessed using FLiNaK molten salt with introduced fluorine gas, which was regarded as a simulation of the FVM process. SS304, SS316L, Inconel 600 and graphite were chosen as the test samples. The extent of corrosion was characterized by an analysis of weight loss and scanning electron microscope studies. All four test samples suffered severe corrosion in the molten salt phase with the corrosion resistance as: Inconel 600>SS316L>graphite>SS304. The presence of the frozen wall could protect materials against corrosion by molten salt and corrosive gases, and compared with materials exposed to molten salt, the corrosion rates of materials protected by the frozen wall were decreased by at least one order of magnitude.展开更多
The visible-light photocatalytic activity of BiFeO3 can be enhanced by treating in LiNO3 molten salt. BiFeO3 is prepared by pyrolysis of tartaric acid complex. The as-prepared BiFeO3 is mixed with LiNO3 salt by ball m...The visible-light photocatalytic activity of BiFeO3 can be enhanced by treating in LiNO3 molten salt. BiFeO3 is prepared by pyrolysis of tartaric acid complex. The as-prepared BiFeO3 is mixed with LiNO3 salt by ball milling for 4 h with the molar ratio 12∶1 of LiNO3 to BiFeO3. The mixture was heated at 270 ℃ for 12 h, and LiNO3 was removed from the product by washing with distilled water. The visible light photocatalytic activity is evaluated by measuring the decoloratation of Congo red aqueous solution. After heating in LiNO3 molten salt, the decoloratation of Congo red aqueous solutions increased significantly from 31.6% to 95.4%. The enhancement of the photocatalytic activity is attributed to surface modification of BiFeO3 by treating in LiNO3 molten Salt.展开更多
基金supported by the National Natural Science Foundation of China(No.11475086)
文摘Sr0.6 Ba0.4 Nb2 O6 micro-rods are prepared by the molten-salt method with K2 SO4,KCl-K2 SO4,and KCl as fluxes.It reveals that the Sr0.6 Ba0.4 Nb2 O6 synthesized with KCl as a flux exhibits a single phase with tetragonal tungsten bronze structure.The measurement of X-ray diffraction indicates that the Sr0.6 Ba0.4 Nb2 O6 micro-rods synthesized at 1 300℃are anisotropic.The morphology of the powers is examined by transmission electron microscope.It reveals that the length-diameter ratio of Sr0.6 Ba0.4 Nb2 O6 micro-rods increases with increasing annealing temperature from 900℃to 1 300℃.At 1 300℃,the rod possesses a large length-diameter ratio of 8∶1.Moreover,the analysis of the piezoelectric properties of single micro-rods using apiezo-response force microscope indicates that the domains of the material are arranged along its radial direction.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Science(No.XDA02030000)
文摘The fluoride volatility method (FVM) is a technique tailored to separate uranium from fuel salt of molten salt reactors. A key challenge in R&D of the FVM is corrosion due to the presence of molten salt and corrosive gases at high temperature. In this work, a frozen-wall technique was proposed to produce a physical barrier between construction materials and corrosive reactants. The protective performance of the frozen wall against molten salt was assessed using FLiNaK molten salt with introduced fluorine gas, which was regarded as a simulation of the FVM process. SS304, SS316L, Inconel 600 and graphite were chosen as the test samples. The extent of corrosion was characterized by an analysis of weight loss and scanning electron microscope studies. All four test samples suffered severe corrosion in the molten salt phase with the corrosion resistance as: Inconel 600>SS316L>graphite>SS304. The presence of the frozen wall could protect materials against corrosion by molten salt and corrosive gases, and compared with materials exposed to molten salt, the corrosion rates of materials protected by the frozen wall were decreased by at least one order of magnitude.
文摘The visible-light photocatalytic activity of BiFeO3 can be enhanced by treating in LiNO3 molten salt. BiFeO3 is prepared by pyrolysis of tartaric acid complex. The as-prepared BiFeO3 is mixed with LiNO3 salt by ball milling for 4 h with the molar ratio 12∶1 of LiNO3 to BiFeO3. The mixture was heated at 270 ℃ for 12 h, and LiNO3 was removed from the product by washing with distilled water. The visible light photocatalytic activity is evaluated by measuring the decoloratation of Congo red aqueous solution. After heating in LiNO3 molten salt, the decoloratation of Congo red aqueous solutions increased significantly from 31.6% to 95.4%. The enhancement of the photocatalytic activity is attributed to surface modification of BiFeO3 by treating in LiNO3 molten Salt.