期刊文献+
共找到204篇文章
< 1 2 11 >
每页显示 20 50 100
Effect of annealing cooling rate on microstructure and mechanical property of 100Cr6 steel ring manufactured by cold ring rolling process 被引量:4
1
作者 魏文婷 吴敏 《Journal of Central South University》 SCIE EI CAS 2014年第1期14-19,共6页
Pre-heat treatment is a vital step before cold ring rolling and it has significant effect on the microstructure and mechanical properties of rolled rings.The 100Cr6 steel rings were subjected to pre-heat treatment and... Pre-heat treatment is a vital step before cold ring rolling and it has significant effect on the microstructure and mechanical properties of rolled rings.The 100Cr6 steel rings were subjected to pre-heat treatment and subsequent cold rolling process.Scanning electron microscopy and tensile tests were applied to investigate microstructure characteristic and mechanical property variations of 100Cr6 steel rings undergoing different pre-heat treatings.The results indicate that the average diameter of carbide particles,the tensile strength and hardness increase,while the elongation decreases with the decrease of cooling rate.The cooling rate has minor effect on the yield strength of sample.After cold ring rolling,the ferrite matrix shows a clear direction along the rolling direction.The distribution of cementite is more homogeneous and the cementite particles are finer.Meanwhile,the hardness of the rolled ring is higher than that before rolling. 展开更多
关键词 ring rolling ANNEALING cooling rate MICROSTRUCTURE mechanical property
在线阅读 下载PDF
Analytical solution of a circular lined tunnel with alterable mechanical property under hydrostatic stress and internal pressure 被引量:4
2
作者 DU Jian-ming FANG Qian +1 位作者 WANG Gan WANG Jun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2757-2770,共14页
The influence of the interaction between surrounding rock and lining on the long-term behaviour of a tunnel in service is significant.In this paper,we proposed a mechanical model of the circular lined tunnel with the ... The influence of the interaction between surrounding rock and lining on the long-term behaviour of a tunnel in service is significant.In this paper,we proposed a mechanical model of the circular lined tunnel with the alterable mechanical property under hydrostatic stress and radially inner surface pressure of the lining.The alterable mechanical properties of the surrounding rock and the lining are embodied by the changing of their elasticity modulus with service time and radial direction of the tunnel,respectively.The proposed mechanical model is successfully validated by comparison with the existing theoretical models and the numerical simulation,respectively.The influences of the main parameters of the proposed mechanical model,such as the radial power-law indexes and the time-varying coefficients of the surrounding rock and the lining,as well as the radially inner surface pressure of the lining,on the interface displacement and pressure between surrounding rock and lining are investigated.The research results can provide some valuable references for timely diagnosis and correct evaluation of the long-term behaviours of a tunnel in service. 展开更多
关键词 lined tunnel theoretical model surrounding rock mechanical property
在线阅读 下载PDF
Microstructure and mechanical property of 2024/3003 gradient aluminum alloy 被引量:6
3
作者 张卫文 陈维平 +2 位作者 费劲 倪东惠 李元元 《Journal of Central South University of Technology》 2004年第2期128-133,共6页
gradient aluminum alloy was prepared by semi-continuous casting using double-stream-pouring technique. The microstructures of the as-cast, pressed and heat-treated alloys were analyzed by scanning electron microscope ... gradient aluminum alloy was prepared by semi-continuous casting using double-stream-pouring technique. The microstructures of the as-cast, pressed and heat-treated alloys were analyzed by scanning electron microscope and transmission electron microscope. And the mechanical properties of the alloy in pressed and heat-treated states were studied. The results show that the ingots with diameter of 65 mm and external thickness (about) 5.5 mm are obtained when the temperatures of the melt in the internal and external ladles are 1 023 and 1 003 K, respectively, and the nozzle diameter is 2.0 mm. The microstructures of the as-cast alloy consist of α(Al)+(θ(CuAl2))+S(Al2CuMg) in the internal region and (α(Al)+MnAl6) in the external region. The phases found in the internal and external layers coexist in the transition zone. The transition layer is maintained after plastic deformation and heat treatment of the alloy. The tensile strength, yield strength and elongation of the alloy are 300 MPa, 132 MPa and 16.0%, respectively, after T6 treatment. The tensile and yield strength are increased by 150.0% and (94.1%,) respectively, compared with that of 3003 aluminum alloy. The maximum hardness in the internal region of 2024/3003 gradient aluminum alloy can be increased from HRF 55 in the pressed state to HRF 70 in the heat-treated state. 展开更多
关键词 ALLOY gradient material MICROSTRUCTURE mechanical property
在线阅读 下载PDF
Microstructure and mechanical property of additively manufactured NiTi alloys:A comparison between selective laser melting and directed energy deposition 被引量:14
4
作者 ZHENG Dan LI Rui-di +4 位作者 YUAN Tie-chui XIONG Yi SONG Bo WANG Jia-xing SU Ya-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1028-1042,共15页
NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emph... NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample. 展开更多
关键词 Ni50.8Ti49.2 shape memory alloy additive manufacturing selective laser melting laser directed energy deposition mechanical properties
在线阅读 下载PDF
Effects of Warm Rolling on the Microstructure and Mechanical Properties of Low-Cr FeCrAl Alloys at Room and Elevated Temperatures
5
作者 CHEN Gangming WANG Hui HUANG Xuefei 《材料导报》 北大核心 2025年第9期178-188,共11页
The effects of different warm rolling(WR)reductions on the microstructure and mechanical properties of low-Cr FeCrAl alloys at both room and elevated temperatures were investigated.The study revealed that when the WR ... The effects of different warm rolling(WR)reductions on the microstructure and mechanical properties of low-Cr FeCrAl alloys at both room and elevated temperatures were investigated.The study revealed that when the WR reduction is small,it effectively refines the grains and forms a large number of subgrains in the matrix,while also inducing the dissolution of the Laves phase.This enhances the mechanical properties of FeCrAl alloys primarily through grain refinement and solid solution strengthening.Conversely,with larger WR reductions,the grain refinement effect diminishes,but a significant number of Laves phases form in the matrix,strengthening the alloys primarily through precipitation strengthening.WR exhibited a remarkable enhancing effect on the comprehensive mechanical properties at both room and high temperatures,with a signi-ficant enhancement in ductility at high temperatures.Notably,a 10%WR reduction resulted in the optimal overall mechanical properties at both room and elevated temperatures. 展开更多
关键词 FeCrAl alloy low-Cr warm rolling Laves phases mechanical property
在线阅读 下载PDF
Improved microstructure and mechanical properties of A517Q steel fabricated via laser directed energy deposition assisted by ultrasonic vibration combined with tempering treatment
6
作者 LI Jian-liang REN He +6 位作者 WANG Qi-chen CHEN Zu-bin JIANG Guo-rui SUN Wen-yao SU Ye-tong GUO Chun-huan JIANG Feng-chun 《Journal of Central South University》 2025年第3期760-775,共16页
In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition... In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition(LDED).The effects of ultrasonic vibration(UV)and tempering treatment on microstructure evolution,microhardness distribution and mechanical properties of deposition layer were studied in detail.The microstructure of UV assisted LDED sample after tempering is mainly composed of tempered sorbite(TS).Due to the improvement of microstructure inhomogeneity and grains refinement,UV assisted LDED sample with tempering treatment obtains excellent mechanical properties.The ultimate tensile strength(UTS),yield strength(YS)and elongation after breaking(EL)reach 765 MPa,657 MPa and 19.5%,the increase ratios of UTS and YS are 14.5%and 33.8%while maintaining plasticity compared to original LDED sample,respectively.It is obvious that ultrasonic vibration combined with tempering is a potential and effective method to obtain uniform microstructure and excellent mechanical properties in metal laser directed energy deposition field. 展开更多
关键词 laser directed energy deposition ultrasonic vibration TEMPERING microstructure mechanical property A517Q steel
在线阅读 下载PDF
Geomechanical implications of joints and veins
7
作者 JI Shaocheng 《地质力学学报》 北大核心 2025年第5期769-792,共24页
[Objective]Traditional structural geology textbooks often provide outdated treatments of joints and veins,failing to reflect the significant advances made in the past three decades.This review seeks to address part of... [Objective]Traditional structural geology textbooks often provide outdated treatments of joints and veins,failing to reflect the significant advances made in the past three decades.This review seeks to address part of this gap by highlighting the significance of barren joints and veins in reconstructing both the directions and magnitudes of geological paleostresses.[Conclusion]Conjugate shear joints not only indicate the orientation of the three effective principal stresses but also imply differential stresses at least four times greater than the tensile strength of the brittle host rock.Exfoliation joints form under stress states ofσ_(1)≈σ_(2)>0>σ_(3),whereas polygonal columnar joints in sedimentary rocks reflectσ_(1)^(*)>>σ_(2)^(*)=σ_(3)^(*),allowing the tensile strength of rocks to be estimated.Tensile joints in brittle strong beds interlayered with ductile soft layers are primarily driven by tensile stresses transferred from interfacial shear stresses between the hard and soft layers,with joint saturation mainly controlled by tectonic strain.Under natural strain-rate conditions,the Weibull modulus and tensile strength of the strong layers,as well as the shear-flow strength of the ductile layers,can be inferred from the nonlinear relationship between joint spacing and bed thickness.Ladder-like orthogonal joints,which form under a stress state ofσ_(1)^(*)>>σ_(2)^(*)>σ_(3)^(*),divide strata into blocky units and,after weathering and erosion,give rise to characteristic castle-and tower-like landforms.Veins,as mineral-filled joints,provide spacing and thickness data that allow estimates of layer strain.Moreover,the nonlinear relationship between vein spacing and bed thickness permits quantification of the extent to which mineral precipitation restores the tensile strength of rock beds.The absence of ladder-like orthogonal veins is attributed to this strength recovery.[Significance]Collectively,these observations demonstrate the critical role of joints and veins in constraining both the magnitudes and orientations of geological paleostress fields. 展开更多
关键词 JOINTS VEINS PALEOSTRESS brittle deformation mechanical properties
在线阅读 下载PDF
Simulation and Experimental Analysis of Mechanical Properties of a Bidirectional Adjustable Magnetorheological Fluid Damper
8
作者 YANG Zhi−rong YE Zhong−min +2 位作者 LIU Jin−liang RAO Zhu−shi XIAO Wang−qiang 《船舶力学》 北大核心 2025年第6期1000-1012,共13页
The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achie... The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achieve this,a bidirectional adjustable MRF damper was designed and developed.Magnetic field simulation analysis was conducted on the damper,along with simulation analysis on its dynamic characteristics.The dynamic characteristics were ultimately validated through experimental testing on the material testing machine,thereby corroborating the theoretical simulation results.Concurrently,this process generated valuable test data for subsequent implementation of the semi-active vibration control system.The simulation and test results demonstrate that the integrated permanent magnet effectively accomplishes bidirectional regulation.The magnetic induction intensity of the damping channel is 0.2 T in the absence of current,increases to 0.5 T when a maximum forward current of 4 A is applied,and becomes 0 T when a maximum reverse current of 3.8 A is applied.When the excitation amplitude is 8 mm and the frequency is 2 Hz,with the applied currents varying,the maximum damping force reaches 8 kN,while the minimum damping force measures at 511 N.Additionally,at zero current,the damping force stands at 2 kN,which aligns closely with simulation results.The present paper can serve as a valuable reference for the design and research of semi-active MRF dampers. 展开更多
关键词 magnetorheological fluid(MRF) DAMPER permanent magnet finite element analysis test of mechanical properties
在线阅读 下载PDF
Research on structural design and mechanical properties of precision electroplating machinery for automobiles based on finite element analysis
9
作者 Wang Jie Jiang Xiaobei 《电镀与精饰》 北大核心 2025年第11期10-21,共12页
Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS... Design a precision electroplating mechanical structure for automobiles based on finite element analysis method and analyze its mechanical properties.Taking the automobile steering knuckle as the research object,ABAQUS parametric modeling technology is used to construct its three-dimensional geometric model,and geometric simplification is carried out.Two surface treatment processes,HK-35 zinc nickel alloy electroplating and pure zinc electroplating,were designed,and the influence of different coatings on the mechanical properties of steering knuckles was compared and analyzed through numerical simulation.At the same time,standard specimens were prepared for salt spray corrosion testing and scratch method combined strength testing to verify the numerical simulation results.The results showed that under emergency braking and composite working conditions,the peak Von Mises stress of the zinc nickel alloy coating was 119.85 MPa,which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Its equivalent strain value was 652×10^(-6),which was lower than that of the pure zinc coating and the alkaline electroplated zinc layer.Experimental data confirms that zinc nickel alloy coatings exhibit significant advantages in stress distribution uniformity,strain performance,and load-bearing capacity in high stress zones.The salt spray corrosion test further indicates that the coating has superior corrosion resistance and coating substrate interface bonding strength,which can significantly improve the mechanical stability and long-term reliability of automotive precision electroplating mechanical structures. 展开更多
关键词 finite element analysis electroplating machinery structure mechanical properties electroplating process salt spray corrosion bonding strength
在线阅读 下载PDF
Innovative dispersion techniques of graphene nanoplatelets(GNPs)through mechanical stirring and ultrasonication:Impact on morphological,mechanical,and thermal properties of epoxy nanocomposites
10
作者 Vasi Uddin Siddiqui S.M.Sapuan Mohd Roshdi Hassan 《Defence Technology(防务技术)》 2025年第1期13-25,共13页
Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological beh... Graphene nanoplatelets(GNPs)have attracted tremendous interest due to their unique properties and bonding capabilities.This study focuses on the effect of GNP dispersion on the mechanical,thermal,and morphological behavior of GNP/epoxy nanocomposites.This study aims to understand how the dispersion of GNPs affects the properties of epoxy nanocomposite and to identify the best dispersion approach for improving mechanical performance.A solvent mixing technique that includes mechanical stirring and ultrasonication was used for producing the nanocomposites.Fourier transform infrared spectroscopy was used to investigate the interaction between GNPs and the epoxy matrix.The measurements of density and moisture content were used to confirm that GNPs were successfully incorporated into the nanocomposite.The findings showed that GNPs are successfully dispersed in the epoxy matrix by combining mechanical stirring and ultrasonication in a single step,producing well-dispersed nanocomposites with improved mechanical properties.Particularly,the nanocomposites at a low GNP loading of 0.1 wt%,demonstrate superior mechanical strength,as shown by increased tensile properties,including improved Young's modulus(1.86 GPa),strength(57.31 MPa),and elongation at break(4.98).The nanocomposite with 0.25 wt%GNP loading performs better,according to the viscoelastic analysis and flexural properties(113.18 MPa).Except for the nanocomposite with a 0.5 wt%GNP loading,which has a higher thermal breakdown temperature,the thermal characteristics do not significantly alter.The effective dispersion of GNPs in the epoxy matrix and low agglomeration is confirmed by the morphological characterization.The findings help with filler selection and identifying the best dispersion approach,which improves mechanical performance.The effective integration of GNPs and their interaction with the epoxy matrix provides the doorway for additional investigation and the development of sophisticated nanocomposites.In fields like aerospace,automotive,and electronics where higher mechanical performance and functionality are required,GNPs'improved mechanical properties and successful dispersion present exciting potential. 展开更多
关键词 Graphene nanoplatelets Epoxy Nanocomposites mechanical properties Thermal properties mechanical stirrer Sonication
在线阅读 下载PDF
Microstructure and mechanical properties of welds of AZ31B magnesium alloy produced by different gas tungsten arc welding variants
11
作者 S.Srinivasan R.Ravi Bharath +1 位作者 A.Atrens P.Bala Srinivasan 《Defence Technology(防务技术)》 2025年第2期98-110,共13页
This work aimed to(i)understand conventional and pulse gas tungsten arc welding(GTAW)of AZ31B,and(ii)explore high frequency welding(100 Hz-1500 Hz).GTA welding with alternating current(AC)and direct current electrode ... This work aimed to(i)understand conventional and pulse gas tungsten arc welding(GTAW)of AZ31B,and(ii)explore high frequency welding(100 Hz-1500 Hz).GTA welding with alternating current(AC)and direct current electrode positive(DCEP)polarities yielded crack-free partial penetration welds for6 mm thick AZ31B alloy sheet.Welding under direct current electrode negative(DCEN)polarity with identical parameters as that for AC and DCEP resulted in full penetration welds that had microcracks.Defect-free full-penetration welds could be accomplished with pulse GTA welding using DCEN polarity at a pulse frequency of 1 Hz with a pulse duration ratio of 1:1.The resultant DCEN P 1:1 weld metal had a microstructure finer than the conventional DCEN weld.Welds produced with pulse duration ratios of 1:2and 1:4 lacked penetration but had a much finer microstructures because of the lower heat input.The arc constriction by the high frequency pulsing in the Activ Arc■-High frequency(AA-HF)mode welding was responsible for deeper penetration.Welds produced under DCEN pulsing and AA-HF conditions had hardness higher than conventional DCEN,DCEP and AC GTA welds,attributed to the finer microstructure.AA-HF GTA welding produced defect free deeper penetration welds with good microstructural features/mechanical properties and also gave an advantage of 50%enhanced productivity when welded at1500 Hz. 展开更多
关键词 AZ31B alloy Pulse GTAW High frequency Microstructure mechanical properties PRODUCTIVITY
在线阅读 下载PDF
Microstructure and mechanical properties of additively manufactu
12
作者 MA Pan YANG Hong +5 位作者 ZHANG Zhi-yu XIE Xiao-chang YANG Ping KONDA-GOKULDOSS Prashanth ZHANG Han JIA Yan-dong 《Journal of Central South University》 2025年第4期1167-1178,共12页
High-entropy alloy composites(HEACs)have attracted significant attention due to their exceptional mechanical properties and chemical stability.By adjusting the content of reinforcing particles in the high-entropy allo... High-entropy alloy composites(HEACs)have attracted significant attention due to their exceptional mechanical properties and chemical stability.By adjusting the content of reinforcing particles in the high-entropy alloy and by employing advanced additive manufacturing techniques,high-performance HEACs can be fabricated.However,there is still considerable room for improvement in their performance.In this study,CoCrFeMnNi HEA powders were used as the matrix,and NiCoFeAlTi high-entropy intermetallic powders were used as the high-entropy reinforcement(HER).CoCrFeMnNi/NiCoFeAlTi HEACs were fabricated using selective laser melting technology.The study results indicate that after aging,the microstructure of HEACs with HER exhibits Al-and Ti-rich nano-oxide precipitates with an orthorhombic CMCM type structure system.After aging at 873 K for 2 h,HEACs with HER achieved excellent overall mechanical properties,with an ultimate tensile strength of 731 MPa.This is attributed to the combined and synergistic effects of precipitation strengthening,dislocation strengthening,and the high lattice distortion caused by high intragranular defects,which provide a multi-scale strengthening and hardening mechanism for the plastic deformation of HEACs with HER.This study demonstrates that aging plays a crucial role in controlling the precipitate phases in complex multi-element alloys. 展开更多
关键词 additive manufacturing selective laser melting high-entropy alloy composite high-entropy intermetallic powders aging treatment microstructure mechanical properties
在线阅读 下载PDF
Bridging Al-PTFE enhances energy output and mechanical properties of LLM-105
13
作者 Wei Huang Yaofeng Mao +6 位作者 Sijia Yu Longjie Huang Jie Chen Cui Nie Xingquan Zhang Fude Nie Jun Wang 《Defence Technology(防务技术)》 2025年第11期49-58,共10页
The energy release of energetic composites is severely limited by the inert alumina(Al_(2)O_(3))layer on the surface of aluminum(Al).Polytetrafluoroethylene(PTFE)could eliminate Al_(2)O_(3)layer due to its highly elec... The energy release of energetic composites is severely limited by the inert alumina(Al_(2)O_(3))layer on the surface of aluminum(Al).Polytetrafluoroethylene(PTFE)could eliminate Al_(2)O_(3)layer due to its highly electronegativity and oxidability of fluorine.However,adding PTFE particles would weaken interfacial interactions resulted in poor mechanical properties and interfacial exothermic reaction.Herein,a bridging Al-PTFE as fuel and interfacial reinforcing agent was added and used to prepare LLM-105/AlPTFE microspheres,achieving both high energy output and excellent mechanical properties.The energy release and combustion reaction performance of LLM-105/Al-PTFE microspheres are significantly improved due to high reaction heat and increased interfacial reaction area of Al-PTFE.The maximum pressure and pressurization rate of LLM-105/Al-PTFE microspheres are 164.06 kPa and 29.88 kPa/s,respectively,which are 40.11%and 16.67%higher than those of physical mixed samples.Furthermore,the tensile strength and compressive strength of LLM-105/Al-PTFE microspheres are 100.40%and 26.47%higher than those of LLM-105/Al.This work provides a new approach to improve the energy release and mechanical properties for energetic composites. 展开更多
关键词 Energetic composites LLM-105 Bridging Al-PTFE Combustion reaction Energy output mechanical properties
在线阅读 下载PDF
Mechanical properties and microstructure of as-cast AA 7050 processed by equal channel angular pressing combined with inter-pass aging treatment
14
作者 LI Jian HE Tao +2 位作者 DU Xiang-yang JIA Dong-sheng VERESCHAKA Alexy 《Journal of Central South University》 2025年第5期1678-1696,共19页
In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 ... In this study,the interaction between deformation and precipitates during multiple equal channel angular pressing(ECAP)deformations and inter-pass aging combination and its effect on the mechanical properties of 7050 aluminum alloy are studied.The result show that ECAP induces numerous substructures and dislocations,effectively promoting the precipitation of theηʹphase exhibiting a bimodal structure during inter-pass aging.Following inter-pass aging and subsequent ECAP,the decrease in grain size(4.8μm)is together with the increase in dislocation density(1.24×10^(15) m^(−2))due to the pinning effect of the precipitated phase.Simultaneously,the dislocation motion causes the second phase particles to become even finer and more diffuse.The synergistic effects of precipitation strengthening,fine grain strengthening,and dislocation strengthening collectively enhance the high strength of aluminum alloys,with ultimate tensile strength and yield strength reaching approximately 610 and 565 MPa,respectively.Meanwhile,ductility remains largely unchanged,primarily due to coordinated grain boundary sliding and the uniform and fine dispersion of second phase particles. 展开更多
关键词 equal channel angular pressing 7050 aluminum alloys inter-pass aging mechanical properties PRECIPITATES dislocation
在线阅读 下载PDF
Erratum to:Evolution of microstructure and mechanical properties in multi-layer 316 L-TiC composite fabricated by selective laser melting additive manufacturing
15
作者 Sasan YAZDANI Suleyman TEKELI +2 位作者 Hossein RABIEIFAR Ufuk TAŞCI Elina AKBARZADEH 《Journal of Central South University》 2025年第2期691-691,共1页
Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technologic... Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research. 展开更多
关键词 additive manufacturing microstructure mechanical properties fellowship program multi layer L TIC composite selective laser melting
在线阅读 下载PDF
Creep mechanical properties of sandstones under triaxial compression with different loads and water contents
16
作者 SUN Xiao-ming JIANG Ming +2 位作者 MIAO Cheng-yu ZHANG Long-yu WANG Lei 《Journal of Central South University》 2025年第9期3470-3492,共23页
Water is a critical factor affecting the mechanical properties of rocks, leading to their degradation. Understanding the creep mechanical behavior of deep roadway surrounding rock under the influence of underground wa... Water is a critical factor affecting the mechanical properties of rocks, leading to their degradation. Understanding the creep mechanical behavior of deep roadway surrounding rock under the influence of underground water is of great significance. Compression and creep experiments on sandstone with varying water contents were conducted using a deep soft rock five-linked rheological experiment system. The experimental conditions, including water content (0%, 0.8%, 1.6%, 2.4% and 3.3%) and confining pressure (0, 6, 9 and 12 MPa), were determined based on pressure-free water absorption tests and in-situ stress measurements. The experimental results show that the compressive strength, creep failure stress, and dilatancy stress of sandstone decrease exponentially with increasing water content, while they increase exponentially with confining pressure. The ratio of lateral to axial instantaneous strain increases nearly linearly with the increase of stress, and the lateral creep strain characteristics of the sample are more significant than the axial ones. The duration of the attenuation creep stage of sandstone decreases with increasing water content and increases with increasing confining pressure. The lateral strain enters the steady-state creep stage before the axial strain, and the onset time of the accelerated creep stage of lateral strain under the failure stress is earlier than that of axial strain. The long-term strength of sandstone was determined based on the lateral steady-state creep rate curve, showing a negative exponential relationship with water content and a positive exponential relationship with confining pressure. A method for determining the long-term strength of rocks based on the ratio of lateral strain to axial strain (μc) is proposed, which is independent of water content. The research results provide a reliable theoretical basis for the analysis of the long-term stability of roadways under the influence of groundwater and the early prediction of creep failure. 展开更多
关键词 creep mechanical properties water content lateral strain steady-state creep rate accelerated creep stage long-term strength
在线阅读 下载PDF
Static compressive mechanical properties and disturbed state concept-based theoretical model of gypsum rocks with coupled influences of wet-dry cycles and flow rates
17
作者 JIANG Song HUANG Ming +2 位作者 WANG Gang XU Chao-shui XIONG Jun 《Journal of Central South University》 2025年第7期2638-2660,共23页
Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive r... Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive research on the effects of W-D cycles,the coupling influence of flow rates and W-D cycles on gypsum rocks remains poorly understood.This study investigates the mechanical behavior and deterioration mechanisms of gypsum rocks subjected to varying W-D cycles and flow rate conditions.Axial compression tests,along with nuclear magnetic resonance(NMR)techniques,were employed to analyze the stress-strain response and microstructural changes.Based on the disturbed state concept(DSC)theory,a W-D deterioration model and a DSC-based constitutive model were developed to describe the degradation trends and mechanical responses of gypsum rocks under different conditions.The results demonstrate that key mechanical indices,elastic modulus,cohesion,uniaxial compressive strength(UCS),and internal friction angle,exhibit logarithmic declines with increasing W-D cycles,with higher flow rates accelerating the deterioration process.The theoretical models accurately capture the nonlinear compaction behavior,peak stress,and post-peak response of gypsum specimens.This study provides valuable insights for predicting the mechanical behavior of gypsum rocks and improving the stability assessments of underground structures under complex environmental conditions. 展开更多
关键词 gypsum rocks wet-dry cycles flow rates mechanical properties disturbed state concept
在线阅读 下载PDF
Shear mechanical properties and debonding failure mechanisms of bolt-resin-rock anchoring system with anisotropic interfaces
18
作者 NIE Xin-xin YIN Qian +7 位作者 TAO Zhi-gang GUO Long-ji RIABOKON Evgenii ZHU De-fu XIE Liang-fu ZHA Wen-hua WANG Lin-feng REN Ya-jun 《Journal of Central South University》 2025年第7期2535-2552,共18页
This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of co... This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of constant normal load(F_(s)),constant normal stiffness(K),and shear rate(v).A systematic analysis of shear mechanical properties,the evolution of maximum principal strain field,and damage characteristics along shear failure surface is presented.Results from direct shear tests demonstrate that initial shear slip diminishes with increasing F_(s)and K,attributed to the normal constraint strengthening effect,while an increase in v enhances initial shear slip due to attenuated deformation coordination and stress transfer.As F_(s)increases from 7.5 to 120 kN,K from 0 to 12 MPa/mm,and v from 0.1 to 2 mm/min,the peak shear load increases by 210.32%and 80.16%with rising F_(s)and K,respectively,while decreases by 38.57%with increasing v.Correspondingly,the shear modulus exhibits,respectively,a 135.29%and 177.06%increase with rising F_(s)and K,and a 37.03%decrease with larger v.Initial shear dilation is identified as marking the formation of shear failure surface along anisotropic interfaces,resulting from the combined shear actions at the resin bolt interface,where resin undergoes shear by bolt surface protrusions,and the resin-rock interface,where mutual shear occurs between resin and rock.With increasing F_(s)and K and decreasing v,the location of the shear failure surface shifts from the resin-rock interface to the resin-bolt interface,accompanied by a transition in failure mode from tensile rupture of resin to shear off at the resin surface. 展开更多
关键词 anchoring system anisotropic interfaces shear mechanical properties strain field evolution debonding failure
在线阅读 下载PDF
Experimental study on the mechanical properties of NPR steel bars at high temperatures
19
作者 ZHANG Jin XU Chuan-long +4 位作者 ZHU Chun XIA Min MA Zi-han LIU Chen ZHANG Xiang-yu 《Journal of Central South University》 2025年第4期1468-1480,共13页
Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperature... Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperatures.The stress−strain curve,ultimate strength,yield strength,modulus of elasticity,elongation after fracture,and percentage reduction of area of NPR steel bars were measured at 9 different temperatures ranging from 20 to 800℃.The experimental results indicate that high-temperature environments significantly affect the mechanical properties of NPR steel.However,compared to other types of steel,NPR steel exhibits better resistance to deformation.When the test temperature is below 700℃,NPR steel exhibits a ductile fracture characteristic,while at 800℃,it exhibits a brittle fracture characteristic.Finally,based on the experimental findings,a constitutive model suitable for NPR steel at high temperatures is proposed. 展开更多
关键词 NPR steel bars high temperatures mechanical properties least squares method constitutive model
在线阅读 下载PDF
Microstructure and mechanical properties of novel SiC-TiC/Al-Mg-Sc-Zr composites prepared by selective laser melting
20
作者 LU Ren-yi MA Guo-nan +4 位作者 BAI Guan-shun ZHAO Wen-tian ZHANG Hui-hua ZHAO Shu-ming ZHUANG Xin-peng 《Journal of Central South University》 2025年第5期1641-1659,共19页
In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm alum... In order to obtain high-density dual-scale ceramic particles(8.5 wt.%SiC+1.5 wt.%TiC)reinforced Al-Mg Sc-Zr composites with uniform microstructure,50 nm TiC and 7μm SiC particles were pre-dispersed into 15−53μm aluminum alloy powders by low-speed ball milling and mechanical mixing technology,respectively.Then,the effects of laser energy density,power and scanning rate on the density of the composites were investigated based on selective laser melting(SLM)technology.The effect of micron-sized SiC and nano-sized TiC particles on solidification structure,mechanical properties and fracture behaviors of the composites was revealed and analyzed in detail.Interfacial reaction and phase variations in the composites with varying reinforced particles were emphatically considered.Results showed that SiC-TiC particles could significantly improve forming quality and density of the SLMed composites,and the optimal relative density was up to 100%.In the process of laser melting,a strong chemical reaction occurs between SiC and aluminum matrix,and micron-scale acicular Al_(4)SiC_(4) bands were formed in situ.There was no interfacial reaction between TiC particles and aluminum matrix.TiC/Al semi-coherent interface had good bonding strength.Pinning effect of TiC particles in grain boundaries could prevent the equiaxial crystals from growing and transforming into columnar crystals,resulting in grain refinement.The optimal ultimate tensile strength(UTS),yield strength(YS),elongation(EL)and elastic modulus of the SiC-TiC/Al-Mg-Sc-Zr composite were~394 MPa,~262 MPa,~8.2%and~86 GPa,respectively.The fracture behavior of the composites included ductile fracture of Al matrix and brittle cleavage fracture of Al_(4)SiC_(4) phases.A large number of cross-distributed acicular Al_(4)SiC_(4) bands were the main factors leading to premature failure and fracture of SiC-TiC/Al-Mg-Sc-Zr composites. 展开更多
关键词 selective laser melting interface structure aluminum matrix composite mechanical properties elastic modulus
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部