This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters ...This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters are calibrated by the traditional calibration method at first. Then, in order to calibrate the parameters affected by the random colored noise, the expectation maximization (EM) algorithm is introduced. Through the use of geometric parameters calibrated by the traditional calibration method, the iterations under the EM framework are decreased and the efficiency of the proposed method on embedded system is improved. The performance of the proposed kinematic calibration method is compared to the traditional calibration method. Furthermore, the feasibility of the proposed method is verified on the EI-MoCap system. The simulation and experiment demonstrate that the motion capture precision is significantly improved by 16.79%and 7.16%respectively in comparison to the traditional calibration method.展开更多
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition...The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.展开更多
A method was proposed to evaluate the real-time reliability for a single product based on damaged measurement degradation data.Most researches on degradation analysis often assumed that the measurement process did not...A method was proposed to evaluate the real-time reliability for a single product based on damaged measurement degradation data.Most researches on degradation analysis often assumed that the measurement process did not have any impact on the product's performance.However,in some cases,the measurement process may exert extra stress on products being measured.To obtain trustful results in such a situation,a new degradation model was derived.Then,by fusing the prior information of product and its own on-line degradation data,the real-time reliability was evaluated on the basis of Bayesian formula.To make the proposed method more practical,a procedure based on expectation maximization (EM) algorithm was presented to estimate the unknown parameters.Finally,the performance of the proposed method was illustrated by a simulation study.The results show that ignoring the influence of the damaged measurement process can lead to biased evaluation results,if the damaged measurement process is involved.展开更多
Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is ...Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is proposed.The algorithm is used to cluster the measurements,and the association matrix between measurements and tracks is constructed by the posterior probability.Compared with the traditional data association algorithm,this algorithm has better tracking performance and less computational complexity.Simulation results demonstrate the effectiveness of the proposed algorithm.展开更多
H-infinity estimator is generally implemented in timevariant state-space models, but it leads to high complexity when the model is used for multiple input multiple output with orthogo- hal frequency division multiplex...H-infinity estimator is generally implemented in timevariant state-space models, but it leads to high complexity when the model is used for multiple input multiple output with orthogo- hal frequency division multiplexing (MIMO-OFDM) systems. Thus, an H-infinity estimator over time-invariant system models is pro- posed, which modifies the Krein space accordingly. In order to avoid the large matrix inversion and multiplication required in each OFDM symbol from different transmit antennas, expectation maximization (EM) is developed to reduce the high computational load. Joint estimation over multiple OFDM symbols is used to resist the high pilot overhead generated by the increasing number of transmit antennas. Finally, the performance of the proposed estimator is enhanced via an angle-domain process. Through performance analysis and simulation experiments, it is indicated that the pro- posed algorithm has a better mean square error (MSE) and bit error rate (BER) performance than the optimal least square (LS) estimator. Joint estimation over multiple OFDM symbols can not only reduce the pilot overhead but also promote the channel performance. What is more, an obvious improvement can be obtained by using the angle-domain filter.展开更多
Systems with a hidden degradation process are perva- sive in the real world. Degrading critical components will under- mine system performance and pose potential failures in the future. Prognostic aims at predicting p...Systems with a hidden degradation process are perva- sive in the real world. Degrading critical components will under- mine system performance and pose potential failures in the future. Prognostic aims at predicting potential failures before it evolves into faults. A prognostic procedure based on expectation maxi- mization and unscented Kalman filter is proposed. System state, sensor measurement and hidden degradation process are viewed as data (incomplete or missing) in the expectation maximization method. System state and hidden degradation process are esti- mated by a unscented Kalman filter upon sensor measurements. Component-specific parameters in a degradation process are iden- tified on the estimation of the degradation process. Residual life is measured by the median of estimated residual life distribution. The proposed procedure is verified by simulations on a first-order capacitor-resistance circuit with degrading resistance. Residual life estimation consists conservatively with the trend and is evalu- ated in terms of relative errors. Simulation results are reasonable. The proposed prognostic method expects applications in practice.展开更多
基金supported by the National Natural Science Foundation of China (61503392)。
文摘This study presents a kinematic calibration method for exoskeletal inertial motion capture (EI-MoCap) system with considering the random colored noise such as gyroscopic drift.In this method, the geometric parameters are calibrated by the traditional calibration method at first. Then, in order to calibrate the parameters affected by the random colored noise, the expectation maximization (EM) algorithm is introduced. Through the use of geometric parameters calibrated by the traditional calibration method, the iterations under the EM framework are decreased and the efficiency of the proposed method on embedded system is improved. The performance of the proposed kinematic calibration method is compared to the traditional calibration method. Furthermore, the feasibility of the proposed method is verified on the EI-MoCap system. The simulation and experiment demonstrate that the motion capture precision is significantly improved by 16.79%and 7.16%respectively in comparison to the traditional calibration method.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(62325104).
文摘The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.
基金Project(60904002)supported by the National Natural Science Foundation of China
文摘A method was proposed to evaluate the real-time reliability for a single product based on damaged measurement degradation data.Most researches on degradation analysis often assumed that the measurement process did not have any impact on the product's performance.However,in some cases,the measurement process may exert extra stress on products being measured.To obtain trustful results in such a situation,a new degradation model was derived.Then,by fusing the prior information of product and its own on-line degradation data,the real-time reliability was evaluated on the basis of Bayesian formula.To make the proposed method more practical,a procedure based on expectation maximization (EM) algorithm was presented to estimate the unknown parameters.Finally,the performance of the proposed method was illustrated by a simulation study.The results show that ignoring the influence of the damaged measurement process can lead to biased evaluation results,if the damaged measurement process is involved.
基金the National Natural Science Foundation of China(61771367)the Science and Technology on Communication Networks Laboratory(HHS19641X003).
文摘Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is proposed.The algorithm is used to cluster the measurements,and the association matrix between measurements and tracks is constructed by the posterior probability.Compared with the traditional data association algorithm,this algorithm has better tracking performance and less computational complexity.Simulation results demonstrate the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6087410860904035+2 种基金61004052)the Directive Plan of Science Research from the Bureau of Education of Hebei Province(Z2009105)the Funds of Central Colleges Basic Scientific Operating Expense(N100604004)
文摘H-infinity estimator is generally implemented in timevariant state-space models, but it leads to high complexity when the model is used for multiple input multiple output with orthogo- hal frequency division multiplexing (MIMO-OFDM) systems. Thus, an H-infinity estimator over time-invariant system models is pro- posed, which modifies the Krein space accordingly. In order to avoid the large matrix inversion and multiplication required in each OFDM symbol from different transmit antennas, expectation maximization (EM) is developed to reduce the high computational load. Joint estimation over multiple OFDM symbols is used to resist the high pilot overhead generated by the increasing number of transmit antennas. Finally, the performance of the proposed estimator is enhanced via an angle-domain process. Through performance analysis and simulation experiments, it is indicated that the pro- posed algorithm has a better mean square error (MSE) and bit error rate (BER) performance than the optimal least square (LS) estimator. Joint estimation over multiple OFDM symbols can not only reduce the pilot overhead but also promote the channel performance. What is more, an obvious improvement can be obtained by using the angle-domain filter.
文摘Systems with a hidden degradation process are perva- sive in the real world. Degrading critical components will under- mine system performance and pose potential failures in the future. Prognostic aims at predicting potential failures before it evolves into faults. A prognostic procedure based on expectation maxi- mization and unscented Kalman filter is proposed. System state, sensor measurement and hidden degradation process are viewed as data (incomplete or missing) in the expectation maximization method. System state and hidden degradation process are esti- mated by a unscented Kalman filter upon sensor measurements. Component-specific parameters in a degradation process are iden- tified on the estimation of the degradation process. Residual life is measured by the median of estimated residual life distribution. The proposed procedure is verified by simulations on a first-order capacitor-resistance circuit with degrading resistance. Residual life estimation consists conservatively with the trend and is evalu- ated in terms of relative errors. Simulation results are reasonable. The proposed prognostic method expects applications in practice.