For precise and accurate patient dose delivery,the dosimetry system must be calibrated properly according to the recommendations of standard dosimetry protocols such as TG-51 and TRS-398. However, the dosimetry protoc...For precise and accurate patient dose delivery,the dosimetry system must be calibrated properly according to the recommendations of standard dosimetry protocols such as TG-51 and TRS-398. However, the dosimetry protocol followed by a calibration laboratory is usually different from the protocols that are followed by different clinics, which may result in variations in the patient dose.Our prime objective in this study was to investigate the effect of the two protocols on dosimetry measurements.Dose measurements were performed for a Co-60 teletherapy unit and a high-energy Varian linear accelerator with 6 and 15 MV photon and 6, 9, 12, and 15 MeV electron beams, following the recommendations and procedures of the AAPM TG-51 and IAEA TRS-398 dosimetry protocols. The dosimetry systems used for this study were calibrated in a Co-60 radiation beam at the Secondary Standard Dosimetry Laboratory(SSDL) PINSTECH,Pakistan, following the IAEA TRS-398 protocol. The ratio of the measured absorbed doses to water in clinical setting,D_w(TG-51/TRS-398), was 0.999 and 0.997 for 6 and15 MV photon beams,whereas these ratios were 1.013,1.009, 1.003, and 1.000 for 6, 9, 12, and 15 MeV electron beams, respectively. This difference in the absorbed dosesto-water D_w ratio may be attributed mainly due to beam quality(K_Q) and ion recombination correction factor.展开更多
For TBI (total body irradiation) prior to BMT(bone marrow transplantation )and in order to guarantee exact treatment,it is necessary to perfect in vivo dosimetry to detect any deviation of the treatment and to verify ...For TBI (total body irradiation) prior to BMT(bone marrow transplantation )and in order to guarantee exact treatment,it is necessary to perfect in vivo dosimetry to detect any deviation of the treatment and to verify the dose dis-tribution. A simplified and convenient transmission type in vivo dosimetry and problems are introduced and discussed.展开更多
Single particle microbeam (SPM) is uniquely capable of delivering precisely the predefined number of charged particles to determined individual cells or sub-cellular targets in situ. It has been recognized as a powe...Single particle microbeam (SPM) is uniquely capable of delivering precisely the predefined number of charged particles to determined individual cells or sub-cellular targets in situ. It has been recognized as a powerful technique for unveiling ionization irradiation mechanisms of organism. This article describes some investigations on the irradiation quality of SPM of major world laboratories by means of Monte Carlo method based on dosimetry and microdosimetry. Those parameters are helpful not only to improve SPM irradiating cell experiments but also to study the biological effects of cells irradiated by SPM.展开更多
The ultimate need to account for the partial amount of energy deposited in target tissue/organ resulting from internal inhalation,ingestion,and injection intakes of radionuclides,defined by the Medical Internal Radiat...The ultimate need to account for the partial amount of energy deposited in target tissue/organ resulting from internal inhalation,ingestion,and injection intakes of radionuclides,defined by the Medical Internal Radiation Dosimetry committee as the specific absorbed fraction(SAF),has become obvious.In this study,we assessed the SAF values for self-and cross-absorption,which were calculated for a uniform distribution of monoenergetic photon and electron emitters with energies ranging from 15 keV to 3 MeV.The voxelized human phantom‘‘High-Definition Reference Korean-man’’(HDRK-man),which was implemented using the Monte Carlo simulation code GEANT4(version 10.1),was used for several combinations of target–source organs.The results were compared to those of the International Commission on Radiological Protection Reference(ICRP133)and Zubal phantoms.It was found that the SAF values of the three models have a similar trend.However,the SAF values for the HDRK-man phantom were higher than those of the other two models,with a relatively good agreement with those for the ICRP133 phantom(differences of 13.9±2.8 and 12.1±3.2 for photon and electron emitters,respectively).To analyze the differences in SAF values,we calculated the chord length distributions(CLDs)for selected target–source combinations.The parameters of organ mass(or volume)and CLDs,in addition to the adopted computational procedures,mainly cause such discrepancies.For realistic radionuclide emission spectra,an overall overestimation was observed when computing the S values for three radiopharmaceuticals studied(I-131,In-111,and Lu-177)and for liver–spleen intra-and inter-organ absorption when compared with published data.The new arrangement of S and SAF values is expected to add value for multidisciplinary research and clinical communities.展开更多
The project established a system for routine measurement of electron dose and brought about a complete experimental approach for high-dose dosimetry. The paper reports some general properties of domestic radiochromic ...The project established a system for routine measurement of electron dose and brought about a complete experimental approach for high-dose dosimetry. The paper reports some general properties of domestic radiochromic pararosaniline cyanide (PR-CN) dye with polyvinyl butyral (PVB)-based film used for measuring electron dose. The optical absorption spectrum, the change in optical density as a function of thickness, distribution of the background optical density and spread of response, long-term stability, linear relationship between the change in optical density per unit thickness and absorbed dose, the minimum detectable limit, effect of environmental factors on background and response after irradiation, effect of light-exposition and the time of establishing complete response have been experimentally investigated.展开更多
The present work has dealt extensively and systematically with the fading characteristics of polystyrene-alanine dosimeters irradiated at different dose rates and total doses under various temperatures (10-70 ℃) and ...The present work has dealt extensively and systematically with the fading characteristics of polystyrene-alanine dosimeters irradiated at different dose rates and total doses under various temperatures (10-70 ℃) and stored a period of time in different conditions (5, 25, room temperature, 40 ℃). Detail investigation on this effect in practical irradiation condition is very important. Because it is difficult to correct this effect using correction coefficients so far. So the temperature coefficients and fading rates have been given along with a lot of experimental data to try to make approximation of radical formation or decay behavior.展开更多
A two-dimensional dose detector for ion beam is required in many high energy density physics experiments.As a solid detector,the GAFChromic film offers a good spatial resolution and dosimetric accuracy.For an absolute...A two-dimensional dose detector for ion beam is required in many high energy density physics experiments.As a solid detector,the GAFChromic film offers a good spatial resolution and dosimetric accuracy.For an absolute dose measurement,the relative effectiveness,which represents the darkening efficiency of the film to a radiation source,needs to be taken into consideration.In this contribution,the dose-response of HD-V2 to argon ions is presented for the first time.The calibration was taken over the dose range of 65 Gy-660 Gy with 8-keV argon ions.The response of net optical density is from 0.01 to 0.05.Triple-color dose-response functions are derived.The relative effectiveness for the argon ion beams is about 5%,much lower than that of protons and carbon ions.To explain this effect,the inactivation probability based on track theory of ion bombardment is proposed.Furthermore,a theoretical prediction of the relative effectiveness for single ion is presented,showing the dependence of the darkening efficiency on the atomic number and the incident energy of ions.展开更多
An indirect method is proposed for measuring the relative energy spectrum of the pulsed electron beam of a plasma focus device. The Bremsstrahlung x-ray, generated by the collision of electrons against the anode surfa...An indirect method is proposed for measuring the relative energy spectrum of the pulsed electron beam of a plasma focus device. The Bremsstrahlung x-ray, generated by the collision of electrons against the anode surface, was measured behind lead filters with various thicknesses using a radiographic film system. A matrix equation was considered in order to explain the relation between the x-ray dose and the spectral amplitudes of the electron beam. The electron spectrum of the device was measured at 0.6 mbar argon and 22 kV charging voltage, in four discrete energy intervals extending up to 500 keV. The results of the experiments show that most of the electrons are emitted in the 125-375 keV energy range and the spectral amplitude becomes negligible beyond 375 keV.展开更多
It is essential to determine the accumulative ultraviolet(UV)irradiation over a period of time in some cases,such as monitoring UV irradiation to the skin,solar disinfection of water,photoresist exposure,etc.UV colori...It is essential to determine the accumulative ultraviolet(UV)irradiation over a period of time in some cases,such as monitoring UV irradiation to the skin,solar disinfection of water,photoresist exposure,etc.UV colorimetric dosimeters,which use dyes'color change to monitor the amount of UV exposure,have been widely studied.However,the exposure data of these UV colorimetric dosimeters can hardly be converted to digital signals,limiting their applications.In this paper,a UV dosimeter has been proposed and demonstrated based on the persistent photoconductivity(PPC)in zinc oxide microwires(ZnO MWs).The PPC effect usually results in high photoconductivity gain but low response speed,which has been regarded as a disadvantage for photodetectors.However,in this work,the unique characteristics of the PPC effect have been utilized to monitoring the accumulative exposure.We demonstrate that the photocurrent in the ZnO MWs depends on the accumulative UV exposure due to the PPC effect,thus the photocurrent can be utilized to determine the UV accumulation.The dosimeter is immune to visible light and exhibits a photoconductive gain of 2654,and the relative error of the dosimeter is about 10%.This UV dosimeter with electrical output is reusable and convenient to integrate with other electronic devices and may also open a new application area for the PPC effect.展开更多
文摘For precise and accurate patient dose delivery,the dosimetry system must be calibrated properly according to the recommendations of standard dosimetry protocols such as TG-51 and TRS-398. However, the dosimetry protocol followed by a calibration laboratory is usually different from the protocols that are followed by different clinics, which may result in variations in the patient dose.Our prime objective in this study was to investigate the effect of the two protocols on dosimetry measurements.Dose measurements were performed for a Co-60 teletherapy unit and a high-energy Varian linear accelerator with 6 and 15 MV photon and 6, 9, 12, and 15 MeV electron beams, following the recommendations and procedures of the AAPM TG-51 and IAEA TRS-398 dosimetry protocols. The dosimetry systems used for this study were calibrated in a Co-60 radiation beam at the Secondary Standard Dosimetry Laboratory(SSDL) PINSTECH,Pakistan, following the IAEA TRS-398 protocol. The ratio of the measured absorbed doses to water in clinical setting,D_w(TG-51/TRS-398), was 0.999 and 0.997 for 6 and15 MV photon beams,whereas these ratios were 1.013,1.009, 1.003, and 1.000 for 6, 9, 12, and 15 MeV electron beams, respectively. This difference in the absorbed dosesto-water D_w ratio may be attributed mainly due to beam quality(K_Q) and ion recombination correction factor.
文摘For TBI (total body irradiation) prior to BMT(bone marrow transplantation )and in order to guarantee exact treatment,it is necessary to perfect in vivo dosimetry to detect any deviation of the treatment and to verify the dose dis-tribution. A simplified and convenient transmission type in vivo dosimetry and problems are introduced and discussed.
基金the National Science Foundation for Distinguished Young Scholars of China(No.10225526)the Knowledge Innovation Program of the Chinese Academy Sciences(No.KSCX2-SW-324)the Foundation for University Key Teachers by the Ministry of Education of China(No.2005jq1135)
文摘Single particle microbeam (SPM) is uniquely capable of delivering precisely the predefined number of charged particles to determined individual cells or sub-cellular targets in situ. It has been recognized as a powerful technique for unveiling ionization irradiation mechanisms of organism. This article describes some investigations on the irradiation quality of SPM of major world laboratories by means of Monte Carlo method based on dosimetry and microdosimetry. Those parameters are helpful not only to improve SPM irradiating cell experiments but also to study the biological effects of cells irradiated by SPM.
文摘The ultimate need to account for the partial amount of energy deposited in target tissue/organ resulting from internal inhalation,ingestion,and injection intakes of radionuclides,defined by the Medical Internal Radiation Dosimetry committee as the specific absorbed fraction(SAF),has become obvious.In this study,we assessed the SAF values for self-and cross-absorption,which were calculated for a uniform distribution of monoenergetic photon and electron emitters with energies ranging from 15 keV to 3 MeV.The voxelized human phantom‘‘High-Definition Reference Korean-man’’(HDRK-man),which was implemented using the Monte Carlo simulation code GEANT4(version 10.1),was used for several combinations of target–source organs.The results were compared to those of the International Commission on Radiological Protection Reference(ICRP133)and Zubal phantoms.It was found that the SAF values of the three models have a similar trend.However,the SAF values for the HDRK-man phantom were higher than those of the other two models,with a relatively good agreement with those for the ICRP133 phantom(differences of 13.9±2.8 and 12.1±3.2 for photon and electron emitters,respectively).To analyze the differences in SAF values,we calculated the chord length distributions(CLDs)for selected target–source combinations.The parameters of organ mass(or volume)and CLDs,in addition to the adopted computational procedures,mainly cause such discrepancies.For realistic radionuclide emission spectra,an overall overestimation was observed when computing the S values for three radiopharmaceuticals studied(I-131,In-111,and Lu-177)and for liver–spleen intra-and inter-organ absorption when compared with published data.The new arrangement of S and SAF values is expected to add value for multidisciplinary research and clinical communities.
基金This Project was Supported by IAEA under the Research Contract No. 4236/RB
文摘The project established a system for routine measurement of electron dose and brought about a complete experimental approach for high-dose dosimetry. The paper reports some general properties of domestic radiochromic pararosaniline cyanide (PR-CN) dye with polyvinyl butyral (PVB)-based film used for measuring electron dose. The optical absorption spectrum, the change in optical density as a function of thickness, distribution of the background optical density and spread of response, long-term stability, linear relationship between the change in optical density per unit thickness and absorbed dose, the minimum detectable limit, effect of environmental factors on background and response after irradiation, effect of light-exposition and the time of establishing complete response have been experimentally investigated.
基金The Project was Supported by IAEA and Completed in Japanese Atomic Energy Research Institute
文摘The present work has dealt extensively and systematically with the fading characteristics of polystyrene-alanine dosimeters irradiated at different dose rates and total doses under various temperatures (10-70 ℃) and stored a period of time in different conditions (5, 25, room temperature, 40 ℃). Detail investigation on this effect in practical irradiation condition is very important. Because it is difficult to correct this effect using correction coefficients so far. So the temperature coefficients and fading rates have been given along with a lot of experimental data to try to make approximation of radical formation or decay behavior.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1930107 and 11827807)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grants Nos.XDA25030100,XDA25010000,and XDB16010200).
文摘A two-dimensional dose detector for ion beam is required in many high energy density physics experiments.As a solid detector,the GAFChromic film offers a good spatial resolution and dosimetric accuracy.For an absolute dose measurement,the relative effectiveness,which represents the darkening efficiency of the film to a radiation source,needs to be taken into consideration.In this contribution,the dose-response of HD-V2 to argon ions is presented for the first time.The calibration was taken over the dose range of 65 Gy-660 Gy with 8-keV argon ions.The response of net optical density is from 0.01 to 0.05.Triple-color dose-response functions are derived.The relative effectiveness for the argon ion beams is about 5%,much lower than that of protons and carbon ions.To explain this effect,the inactivation probability based on track theory of ion bombardment is proposed.Furthermore,a theoretical prediction of the relative effectiveness for single ion is presented,showing the dependence of the darkening efficiency on the atomic number and the incident energy of ions.
文摘An indirect method is proposed for measuring the relative energy spectrum of the pulsed electron beam of a plasma focus device. The Bremsstrahlung x-ray, generated by the collision of electrons against the anode surface, was measured behind lead filters with various thicknesses using a radiographic film system. A matrix equation was considered in order to explain the relation between the x-ray dose and the spectral amplitudes of the electron beam. The electron spectrum of the device was measured at 0.6 mbar argon and 22 kV charging voltage, in four discrete energy intervals extending up to 500 keV. The results of the experiments show that most of the electrons are emitted in the 125-375 keV energy range and the spectral amplitude becomes negligible beyond 375 keV.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61804136,U1604263,and U1804155)China Postdoctoral Science Foundation(Grant Nos.2018M630829 and 2019T120630).
文摘It is essential to determine the accumulative ultraviolet(UV)irradiation over a period of time in some cases,such as monitoring UV irradiation to the skin,solar disinfection of water,photoresist exposure,etc.UV colorimetric dosimeters,which use dyes'color change to monitor the amount of UV exposure,have been widely studied.However,the exposure data of these UV colorimetric dosimeters can hardly be converted to digital signals,limiting their applications.In this paper,a UV dosimeter has been proposed and demonstrated based on the persistent photoconductivity(PPC)in zinc oxide microwires(ZnO MWs).The PPC effect usually results in high photoconductivity gain but low response speed,which has been regarded as a disadvantage for photodetectors.However,in this work,the unique characteristics of the PPC effect have been utilized to monitoring the accumulative exposure.We demonstrate that the photocurrent in the ZnO MWs depends on the accumulative UV exposure due to the PPC effect,thus the photocurrent can be utilized to determine the UV accumulation.The dosimeter is immune to visible light and exhibits a photoconductive gain of 2654,and the relative error of the dosimeter is about 10%.This UV dosimeter with electrical output is reusable and convenient to integrate with other electronic devices and may also open a new application area for the PPC effect.