The effects of CeO2 contents and silica carrier porosity with their pore diameters ranging from 5.2 nm to 12.5 nm of CuO-CeO2/SiO2 cata-lysts in CO oxidation were investigated.The catalysts were characterized by N2 ad...The effects of CeO2 contents and silica carrier porosity with their pore diameters ranging from 5.2 nm to 12.5 nm of CuO-CeO2/SiO2 cata-lysts in CO oxidation were investigated.The catalysts were characterized by N2 adsorption/desorption at low temperature,X-ray diffraction (XRD),temperature-programmed reduction by H2 (H2-TPR),oxygen temperature programmed desorption (O2-TPD) and X-ray photoelectron spectroscopy (XPS).The results suggested that,the ceria content and the porosity of SiO2 carrier possessed great impacts on the structures and catalytic performances of CuO-CeO2/SiO2 catalysts.When appropriate content of CeO2 (Ce content 8 wt%) was added,the catalytic activity was greatly enhanced.In the catalyst supported on silica carrier with larger pore diameter,higher dispersion of CuO was observed,better agglomeration-resistant capacity was displayed and more lattice oxygen could be found,thus the CuO-CeO2 supported on Si-1 showed higher catalytic activity for low-temperature CO oxidation.展开更多
In our former work [Catal. Today 174 (2011) 127], 12 heterogeneous catalysts were screened for CO oxidation, and Au-ZnO/Al2O3 was chosen and optimized in terms of weight loadings of Au and ZnO. The present study fol...In our former work [Catal. Today 174 (2011) 127], 12 heterogeneous catalysts were screened for CO oxidation, and Au-ZnO/Al2O3 was chosen and optimized in terms of weight loadings of Au and ZnO. The present study follows on to consider the impact of process parameters (catalyst preparation and reaction conditions), in conjunction with catalyst composition (weight loadings of Au and ZnO, and the total weight of the catalyst), as the optimization of the process parameters simultaneously optimized the catalyst composition. The optimization target is the reactivity of this important reaction. These factors were first optimized using response surface methodology (RSM) with 25 experiments, to obtain the optimum: 100 mg of 1.0%Au-4.1%ZnO/Al2O3 catalyst with 220℃ calcination and 100℃ reduction. After optimization, the main effects and interactions of these five factors were studied using statistical sensitivity analysis (SA). Certain observations from SA were verified by reaction mechanism, reactivity test and/or characterization techniques, while others need further investigation.展开更多
The catalytic performances of Co3O4/SiO2 catalysts prepared by incipient wetness impregnation for CO oxidation were investigated using three kinds of silica as carriers with different pore sizes of 7.7,14.0 and 27.0 n...The catalytic performances of Co3O4/SiO2 catalysts prepared by incipient wetness impregnation for CO oxidation were investigated using three kinds of silica as carriers with different pore sizes of 7.7,14.0 and 27.0 nm.The effects of calcination temperature on the catalyst surface and micro structure properties as well as catalytic performance for the oxidation of carbon monoxide were also studied.All catalysts were characterized by N2 adsorption-desorption,XRD,XPS,FTIR,H2-TPR and O2-TPD.It was found that the properties and crystal size of cobalt-containing species strongly depended on the pore size of silica carrier.While the silica pore size increased from 7.7 to 27.0 nm,the Co3O4 crystal size increased from 8.5 to 13.5 nm.Moreover,it was demonstrated that if the spinel crystal structure of Co3O4 was obtained at a calcination temperature as low as 150℃,the catalyst sample would have a high Co3O4 surface dispersion and an increase of surface active species,and thus exhibit a high activity for the oxidation of carbon monoxide.展开更多
基金supported by the National Natural Science Foundation of China(20590360)New Century Excellent Talent Project of China(NCET-05-0783)
文摘The effects of CeO2 contents and silica carrier porosity with their pore diameters ranging from 5.2 nm to 12.5 nm of CuO-CeO2/SiO2 cata-lysts in CO oxidation were investigated.The catalysts were characterized by N2 adsorption/desorption at low temperature,X-ray diffraction (XRD),temperature-programmed reduction by H2 (H2-TPR),oxygen temperature programmed desorption (O2-TPD) and X-ray photoelectron spectroscopy (XPS).The results suggested that,the ceria content and the porosity of SiO2 carrier possessed great impacts on the structures and catalytic performances of CuO-CeO2/SiO2 catalysts.When appropriate content of CeO2 (Ce content 8 wt%) was added,the catalytic activity was greatly enhanced.In the catalyst supported on silica carrier with larger pore diameter,higher dispersion of CuO was observed,better agglomeration-resistant capacity was displayed and more lattice oxygen could be found,thus the CuO-CeO2 supported on Si-1 showed higher catalytic activity for low-temperature CO oxidation.
基金supported by the Singapore AcRF Tier 1 Grant(RG 19/09)the A*STAR SERC Grant(102 101 0020)
文摘In our former work [Catal. Today 174 (2011) 127], 12 heterogeneous catalysts were screened for CO oxidation, and Au-ZnO/Al2O3 was chosen and optimized in terms of weight loadings of Au and ZnO. The present study follows on to consider the impact of process parameters (catalyst preparation and reaction conditions), in conjunction with catalyst composition (weight loadings of Au and ZnO, and the total weight of the catalyst), as the optimization of the process parameters simultaneously optimized the catalyst composition. The optimization target is the reactivity of this important reaction. These factors were first optimized using response surface methodology (RSM) with 25 experiments, to obtain the optimum: 100 mg of 1.0%Au-4.1%ZnO/Al2O3 catalyst with 220℃ calcination and 100℃ reduction. After optimization, the main effects and interactions of these five factors were studied using statistical sensitivity analysis (SA). Certain observations from SA were verified by reaction mechanism, reactivity test and/or characterization techniques, while others need further investigation.
基金supported by the National Natural Science Foundation of China(NSFC 20776089)the 985 Project of Sichuan University
文摘The catalytic performances of Co3O4/SiO2 catalysts prepared by incipient wetness impregnation for CO oxidation were investigated using three kinds of silica as carriers with different pore sizes of 7.7,14.0 and 27.0 nm.The effects of calcination temperature on the catalyst surface and micro structure properties as well as catalytic performance for the oxidation of carbon monoxide were also studied.All catalysts were characterized by N2 adsorption-desorption,XRD,XPS,FTIR,H2-TPR and O2-TPD.It was found that the properties and crystal size of cobalt-containing species strongly depended on the pore size of silica carrier.While the silica pore size increased from 7.7 to 27.0 nm,the Co3O4 crystal size increased from 8.5 to 13.5 nm.Moreover,it was demonstrated that if the spinel crystal structure of Co3O4 was obtained at a calcination temperature as low as 150℃,the catalyst sample would have a high Co3O4 surface dispersion and an increase of surface active species,and thus exhibit a high activity for the oxidation of carbon monoxide.