Photocatalytic water splitting and carbon dioxide reduction provide us clean and sustainable energy resources. The carbon dioxide reduction is also the redemption of the greenhouse effect. MoS/TiOphotocatalysts based ...Photocatalytic water splitting and carbon dioxide reduction provide us clean and sustainable energy resources. The carbon dioxide reduction is also the redemption of the greenhouse effect. MoS/TiOphotocatalysts based on TiOnanoplates have been synthesized via a hydrothermal acidification route for water and carbon dioxide reduction reactions. This facile approach generates well dispersed Mo S3 with low crystallinity on the surface of TiOnanoplates. The as-synthesized MoS/TiOphotocatalyst showed considerable activity for both water reduction and carbon dioxide reduction. The thermal treatment effects of TiO, the loading percentage of MoSand the crystalline phase of TiOhave been investigated towards the photocatalytic performance. TiOnanoplate synthesized through hydrothermal reaction with the presence of HF acid is an ideal semiconductor material for the loading of MoSfor photocatalytic water and carbon dioxide reduction simultaneously in EDTA sacrificial solution.展开更多
In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reducti...In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reduction method in a rock pillar for preventing water inrush based on catastrophic theory. Fluid–solid coupling effects and safety margins in a rock pillar were studied. Analysis shows that rock pillar instability, exerted by disturbance stress and seepage stress, is the process of rock pillar catastrophic destabilization induced by nonlinear extension of plastic zones in the rock pillar. Seepage flow emerges in the rock pillar for preventing water inrush, accompanied by mechanical instability of the rock pillar. Taking the accident of a confined karst cave water-inrush of Qiyi Mine as an example, by studying the safety factor of the rock pillar and the relationship between karst cave water pressure and thickness of the rock pillar,it is proposed that rock pillar thickness with a safety factor equal to 1.5 is regarded as the calculated safety thickness of the rock pillar, which should be equal to the sum of the blasthole depth, blasting disturbance depth and the calculated safety thickness of the rock pillar. The cause of the karst water inrush at Qiyi Mine is that the rock pillar was so small that it did not possess a safety margin. Combining fluid–solid coupling theory, catastrophic theory and strength reduction method to study the nonlinear mechanical response of complicated rock engineering, new avenues for quantitative analysis of rock engineering stability evaluation should be forthcoming.展开更多
基金supported by the Fundamental Research Funds for the Central Universities of Chinathe Starting Research Funds of Shaanxi Normal University for Mainstay Young Scholars+2 种基金the National Environment Agency of Singapore under the Environment Technology Research Programme(ETRP)through Project No.ETRP 1002 103Singapore National Research Foundation(NRF)through the Singapore-Berkeley Research Initiative for Sustainable Energy(SinBeRISE)Cambridge Centre for Carbon Reduction in Chemical Technology(C4T)CREATE Programmes
文摘Photocatalytic water splitting and carbon dioxide reduction provide us clean and sustainable energy resources. The carbon dioxide reduction is also the redemption of the greenhouse effect. MoS/TiOphotocatalysts based on TiOnanoplates have been synthesized via a hydrothermal acidification route for water and carbon dioxide reduction reactions. This facile approach generates well dispersed Mo S3 with low crystallinity on the surface of TiOnanoplates. The as-synthesized MoS/TiOphotocatalyst showed considerable activity for both water reduction and carbon dioxide reduction. The thermal treatment effects of TiO, the loading percentage of MoSand the crystalline phase of TiOhave been investigated towards the photocatalytic performance. TiOnanoplate synthesized through hydrothermal reaction with the presence of HF acid is an ideal semiconductor material for the loading of MoSfor photocatalytic water and carbon dioxide reduction simultaneously in EDTA sacrificial solution.
基金Financial supports for this work, provided by the National Natural Science Foundation of China (No. 51274097)the Scientific Research Fund of Hunan Provincial Education Department of China (No. 13A020)the Open Projects of State Key Laboratory of Coal Resources and Safe Mining, CUMT (No. 13KF03)
文摘In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reduction method in a rock pillar for preventing water inrush based on catastrophic theory. Fluid–solid coupling effects and safety margins in a rock pillar were studied. Analysis shows that rock pillar instability, exerted by disturbance stress and seepage stress, is the process of rock pillar catastrophic destabilization induced by nonlinear extension of plastic zones in the rock pillar. Seepage flow emerges in the rock pillar for preventing water inrush, accompanied by mechanical instability of the rock pillar. Taking the accident of a confined karst cave water-inrush of Qiyi Mine as an example, by studying the safety factor of the rock pillar and the relationship between karst cave water pressure and thickness of the rock pillar,it is proposed that rock pillar thickness with a safety factor equal to 1.5 is regarded as the calculated safety thickness of the rock pillar, which should be equal to the sum of the blasthole depth, blasting disturbance depth and the calculated safety thickness of the rock pillar. The cause of the karst water inrush at Qiyi Mine is that the rock pillar was so small that it did not possess a safety margin. Combining fluid–solid coupling theory, catastrophic theory and strength reduction method to study the nonlinear mechanical response of complicated rock engineering, new avenues for quantitative analysis of rock engineering stability evaluation should be forthcoming.