期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MoS_3 loaded TiO_2 nanoplates for photocatalytic water and carbon dioxide reduction 被引量:1
1
作者 Wei Zhang Tianhua Zhou +1 位作者 Jindui Hong Rong Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第3期500-506,共7页
Photocatalytic water splitting and carbon dioxide reduction provide us clean and sustainable energy resources. The carbon dioxide reduction is also the redemption of the greenhouse effect. MoS/TiOphotocatalysts based ... Photocatalytic water splitting and carbon dioxide reduction provide us clean and sustainable energy resources. The carbon dioxide reduction is also the redemption of the greenhouse effect. MoS/TiOphotocatalysts based on TiOnanoplates have been synthesized via a hydrothermal acidification route for water and carbon dioxide reduction reactions. This facile approach generates well dispersed Mo S3 with low crystallinity on the surface of TiOnanoplates. The as-synthesized MoS/TiOphotocatalyst showed considerable activity for both water reduction and carbon dioxide reduction. The thermal treatment effects of TiO, the loading percentage of MoSand the crystalline phase of TiOhave been investigated towards the photocatalytic performance. TiOnanoplate synthesized through hydrothermal reaction with the presence of HF acid is an ideal semiconductor material for the loading of MoSfor photocatalytic water and carbon dioxide reduction simultaneously in EDTA sacrificial solution. 展开更多
关键词 PHOTOCATALYTIC water reduction Carbon dioxide reduction Molybdenum sulfide Titanium oxide
在线阅读 下载PDF
Fluid–solid coupling analysis of rock pillar stability for concealed karst cave ahead of a roadway based on catastrophic theory 被引量:10
2
作者 Zhao Yanlin Peng Qingyang +2 位作者 Wan Wen Wang Weijun Chen Bin 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期737-745,共9页
In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reducti... In order to study the mechanism of water inrush from a concealed, confined karst cave, we established a fluid–solid coupling model of water inrush from a concealed karst cave ahead of a roadway and a strength reduction method in a rock pillar for preventing water inrush based on catastrophic theory. Fluid–solid coupling effects and safety margins in a rock pillar were studied. Analysis shows that rock pillar instability, exerted by disturbance stress and seepage stress, is the process of rock pillar catastrophic destabilization induced by nonlinear extension of plastic zones in the rock pillar. Seepage flow emerges in the rock pillar for preventing water inrush, accompanied by mechanical instability of the rock pillar. Taking the accident of a confined karst cave water-inrush of Qiyi Mine as an example, by studying the safety factor of the rock pillar and the relationship between karst cave water pressure and thickness of the rock pillar,it is proposed that rock pillar thickness with a safety factor equal to 1.5 is regarded as the calculated safety thickness of the rock pillar, which should be equal to the sum of the blasthole depth, blasting disturbance depth and the calculated safety thickness of the rock pillar. The cause of the karst water inrush at Qiyi Mine is that the rock pillar was so small that it did not possess a safety margin. Combining fluid–solid coupling theory, catastrophic theory and strength reduction method to study the nonlinear mechanical response of complicated rock engineering, new avenues for quantitative analysis of rock engineering stability evaluation should be forthcoming. 展开更多
关键词 Rock mechanics Catastrophic theory Shear strength reduction method Karst water inrush Safety factor
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部