This paper describes an approach to identify epicyclic and tricyclic motion during projectile flight caused by mass asymmetries in spinstabilized projectiles. Flight video was captured following projectile launch of s...This paper describes an approach to identify epicyclic and tricyclic motion during projectile flight caused by mass asymmetries in spinstabilized projectiles. Flight video was captured following projectile launch of several M110A2E1 155 mm artillery projectiles. These videos were then analyzed using the automated flight video analysis method to attain their initial position and orientation histories.Examination of the pitch and yaw histories clearly indicates that in addition to epicyclic motion's nutation and precession oscillations, an even faster wobble amplitude is present during each spin revolution, even though some of the amplitudes of the oscillation are smaller than 0.02 degree.The results are compared to a sequence of shots where little appreciable mass asymmetries were present, and only nutation and precession frequencies are predominantly apparent in the motion history results. Magnitudes of the wobble motion are estimated and compared to product of inertia measurements of the asymmetric projectiles.展开更多
目的采用两种不同的人工智能(artificial intelligence,AI)算法技术构建两种不同的宫颈液基薄层细胞涂片(liquid-based cytology,LBC)质控模型,通过混合AI辅助,对比两种算法模型对宫颈LBC的质量控制水平的提高总用。方法使用了105例宫颈...目的采用两种不同的人工智能(artificial intelligence,AI)算法技术构建两种不同的宫颈液基薄层细胞涂片(liquid-based cytology,LBC)质控模型,通过混合AI辅助,对比两种算法模型对宫颈LBC的质量控制水平的提高总用。方法使用了105例宫颈LBC样本,分别采用卷积神经网络(convolutional neural network,CNN)算法和Transformer网络算法作为具体的AI算法。标记的特征包括片内细胞量、红细胞过多、炎细胞过多、气泡,涂片样本经过涂片预处理和数字化,然后进行图像分割和特征提取。利用标记的特征数据,进行机器学习模型的训练和优化。统计两种AI模型与医师的质控结果,计算KAPPA指数、灵敏度、特异度、曲线下面积(area under the curve,AUC)等指标对AI质控结果进行分析。结果CNN算法在正常涂片、炎性背景和血性背景方面的质控结果与专家复核质控结果具有统计学差异(P<0.001);Transformer算法质控结果与专家复核结果相似,差异不具有统计学意义(P>0.05);普通医师质控结果与专家复核质控结果在正常涂片检出率和血性背景方面具有统计学差异(P<0.001)。CNN算法Kappa值=0.567,与专家复核结果一致性中等;Transformer算法Kappa值=0.890,与专家复核结果一致性最好;普通医师Kappa值=0.675,与专家复核结果一致性较好。以专家复核结果作为参考标准,对Transformer算法与普通医师的质控结果预测效能进行评价,在检出血性背景与正常涂片方面,Transformer算法的预测效能(炎性背景:AUC=1.000;正常涂片:AUC=0.768)高于普通医师(血性背景:AUC=0.849;正常涂片:AUC=0.500)。结论Transformer算法能够有效辅助医师进行宫颈LBC质控评分,提高涂片样本质量控制的效率和准确性,为宫颈癌细胞学筛查提供了一种新的质量控制方法,具有潜在的临床应用前景。展开更多
近年来,随着计算机视觉在智能监控、自动驾驶等领域的广泛应用,越来越多视频不仅用于人类观看,还可直接由机器视觉算法进行自动分析。如何高效地面向机器视觉存储和传输此类视频成为新的挑战。然而,现有的视频编码标准,如最新的多功能...近年来,随着计算机视觉在智能监控、自动驾驶等领域的广泛应用,越来越多视频不仅用于人类观看,还可直接由机器视觉算法进行自动分析。如何高效地面向机器视觉存储和传输此类视频成为新的挑战。然而,现有的视频编码标准,如最新的多功能视频编码(Versatile Video Coding,VVC/H.266),主要针对人眼视觉特性进行优化,未能充分考虑压缩对机器视觉任务的性能影响。为解决这一问题,本文以多目标跟踪作为典型的机器视觉视频处理任务,提出一种面向机器视觉的VVC帧内编码算法。首先,使用神经网络可解释性方法,梯度加权类激活映射(Gradient-weighted Class Activation Mapping,GradCAM++),对视频内容进行显著性分析,定位出机器视觉任务所关注的区域,并以显著图的形式表示。随后,为了突出视频画面中的关键边缘轮廓信息,本文引入边缘检测并将其结果与显著性分析结果进行融合,得到最终的机器视觉显著性图。最后,基于融合后的机器视觉显著性图改进VVC模式选择过程,优化VVC中的块划分和帧内预测的模式决策过程。通过引入机器视觉失真,代替原有的信号失真来调整率失真优化公式,使得编码器在压缩过程中尽可能保留对视觉任务更为相关的信息。实验结果表明,与VVC基准相比,所提出方法在保持相同机器视觉检测精度的同时,可节约12.7%的码率。展开更多
文摘This paper describes an approach to identify epicyclic and tricyclic motion during projectile flight caused by mass asymmetries in spinstabilized projectiles. Flight video was captured following projectile launch of several M110A2E1 155 mm artillery projectiles. These videos were then analyzed using the automated flight video analysis method to attain their initial position and orientation histories.Examination of the pitch and yaw histories clearly indicates that in addition to epicyclic motion's nutation and precession oscillations, an even faster wobble amplitude is present during each spin revolution, even though some of the amplitudes of the oscillation are smaller than 0.02 degree.The results are compared to a sequence of shots where little appreciable mass asymmetries were present, and only nutation and precession frequencies are predominantly apparent in the motion history results. Magnitudes of the wobble motion are estimated and compared to product of inertia measurements of the asymmetric projectiles.
文摘目的采用两种不同的人工智能(artificial intelligence,AI)算法技术构建两种不同的宫颈液基薄层细胞涂片(liquid-based cytology,LBC)质控模型,通过混合AI辅助,对比两种算法模型对宫颈LBC的质量控制水平的提高总用。方法使用了105例宫颈LBC样本,分别采用卷积神经网络(convolutional neural network,CNN)算法和Transformer网络算法作为具体的AI算法。标记的特征包括片内细胞量、红细胞过多、炎细胞过多、气泡,涂片样本经过涂片预处理和数字化,然后进行图像分割和特征提取。利用标记的特征数据,进行机器学习模型的训练和优化。统计两种AI模型与医师的质控结果,计算KAPPA指数、灵敏度、特异度、曲线下面积(area under the curve,AUC)等指标对AI质控结果进行分析。结果CNN算法在正常涂片、炎性背景和血性背景方面的质控结果与专家复核质控结果具有统计学差异(P<0.001);Transformer算法质控结果与专家复核结果相似,差异不具有统计学意义(P>0.05);普通医师质控结果与专家复核质控结果在正常涂片检出率和血性背景方面具有统计学差异(P<0.001)。CNN算法Kappa值=0.567,与专家复核结果一致性中等;Transformer算法Kappa值=0.890,与专家复核结果一致性最好;普通医师Kappa值=0.675,与专家复核结果一致性较好。以专家复核结果作为参考标准,对Transformer算法与普通医师的质控结果预测效能进行评价,在检出血性背景与正常涂片方面,Transformer算法的预测效能(炎性背景:AUC=1.000;正常涂片:AUC=0.768)高于普通医师(血性背景:AUC=0.849;正常涂片:AUC=0.500)。结论Transformer算法能够有效辅助医师进行宫颈LBC质控评分,提高涂片样本质量控制的效率和准确性,为宫颈癌细胞学筛查提供了一种新的质量控制方法,具有潜在的临床应用前景。
文摘近年来,随着计算机视觉在智能监控、自动驾驶等领域的广泛应用,越来越多视频不仅用于人类观看,还可直接由机器视觉算法进行自动分析。如何高效地面向机器视觉存储和传输此类视频成为新的挑战。然而,现有的视频编码标准,如最新的多功能视频编码(Versatile Video Coding,VVC/H.266),主要针对人眼视觉特性进行优化,未能充分考虑压缩对机器视觉任务的性能影响。为解决这一问题,本文以多目标跟踪作为典型的机器视觉视频处理任务,提出一种面向机器视觉的VVC帧内编码算法。首先,使用神经网络可解释性方法,梯度加权类激活映射(Gradient-weighted Class Activation Mapping,GradCAM++),对视频内容进行显著性分析,定位出机器视觉任务所关注的区域,并以显著图的形式表示。随后,为了突出视频画面中的关键边缘轮廓信息,本文引入边缘检测并将其结果与显著性分析结果进行融合,得到最终的机器视觉显著性图。最后,基于融合后的机器视觉显著性图改进VVC模式选择过程,优化VVC中的块划分和帧内预测的模式决策过程。通过引入机器视觉失真,代替原有的信号失真来调整率失真优化公式,使得编码器在压缩过程中尽可能保留对视觉任务更为相关的信息。实验结果表明,与VVC基准相比,所提出方法在保持相同机器视觉检测精度的同时,可节约12.7%的码率。