China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of...China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of high speed trains moving on bridges when a strong earthquake happens.In the past decades,a bunch of theoretical and numerical studies have been conducted in the seismic dynamic field of high-speed railway.However,the effective dynamic test system for verifying the given method and theoretical results is still lacking.Therefore,a novel dynamic test system(DTS)consisting of a shaking table array and a train-pass-bridge reduced-scale model is proposed in this paper.Through some crucial technical problems discussion,the effectiveness of similar design scheme and the feasibility of reduced-scale DTS are elaborated,and then the detailed DTS structures are given and displayed as part-by-part.On this basis,the demonstration tests are conducted and compared with the numerical simulation.The results show that the proposed DTS is accurate and effective.Therefore,the DTS can provide a new physical simulation approach to study the high-speed train’s running safety on bridges under earthquakes and can also provide a reference for the construction of related systems.展开更多
To ensure the accuracy and precision of vibration test,a universal checking method is proposed.The use of the method is discussed and an actual example is given.First,the calibration of the 7703A-500 type sensor is an...To ensure the accuracy and precision of vibration test,a universal checking method is proposed.The use of the method is discussed and an actual example is given.First,the calibration of the 7703A-500 type sensor is analyzed on the basis of frequency response method.The frequency range of normal working can be determined by the exact calibration of sensitivity,frequency response and linearity.For the basic problem of abnormal signals appearing in test system,the method of zero check and loading vibration source are developed.The frequency spectrum of output signals is employed to distinguish the noise signal,unknown source signal and useful signal effectively.Finally,the experimental results reveal the importance to improve the accuracy of the results of practical vibration test.展开更多
Sand/dust test is one of the key projects to examine the environmental adaptability of ordnance equipment.In order to decrease the abrasion of test facility caused by the sand/dust particles,the particles contained in...Sand/dust test is one of the key projects to examine the environmental adaptability of ordnance equipment.In order to decrease the abrasion of test facility caused by the sand/dust particles,the particles contained in the airflowneed to be reclaimed effectively.Amathematical model of Useparator is established.The flowfield and the trajectories of particles inside the separator are obtained using a numerical simulation method,and the separation efficiency and pressure drop of separator with different rows of separate components are also obtained at various flowvelocities.The simulation results indicate that the efficiency of U inertia separator is affected by the flowvelocity evidently,and a reasonably designed separator can meet the requirement of the separation efficiency in particular situation.The results can be use as reference for the design and test of sand/dust separate systems.展开更多
Digital radiographic(DR)testing equipment has been widely promoted and applied in the inspection of circumferential welds in oil and gas pipelines.In order to establish a comprehensive quality control system for digit...Digital radiographic(DR)testing equipment has been widely promoted and applied in the inspection of circumferential welds in oil and gas pipelines.In order to establish a comprehensive quality control system for digital radiographic testing and fully evaluate the integrated system inspection ability of equipment,personnel,and processes,a scientific and standardized evaluation method to the system is very necessary.Here investigates the precedents of relevant non-destructive testing evaluation methods at home and abroad,considers the testing characteristics of DR equipment,develops a complete set of DR testing system evaluation procedures.It deeply studies the adaptability methods of program processes from defect production to slicing processing and data statistical calculation for digital radiographic testing evaluation.To check the repeatability and reliability of the detectable system,five process welds with 200 real metallographic defects were fabricated in the laboratory.From the detected results,the DR system has good repeatability in image quality,and the detectable defect size reaches 0.85 mm under achieving 90%detection probability at a confidence level of 95%,the error of detected defect length is±2 mm,and the error of detected defect localization is±5 mm.The qualitative and quantitative detection of defects are accurate and reliable.The test further confirmed the reliable detection ability of the DR detection system,and fully validated the scientific and practical evaluation method designed.The research on the evaluation test method can serve as an important link in the quality control system for the on-site application of digital ray equipment in long-distance pipelines.The designed program,test,and evaluation content can serve as an important basis for the formulation of relevant specifications or standards.展开更多
The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled h...The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.展开更多
Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various f...Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°.展开更多
The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flig...The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test.展开更多
With the development of high energy solid propellants,it is critical to evaluate the safety and power performance of solid propellants in the face of threats such as unmanned aerial vehicles(UAVs)when transporting and...With the development of high energy solid propellants,it is critical to evaluate the safety and power performance of solid propellants in the face of threats such as unmanned aerial vehicles(UAVs)when transporting and using them in contemporary warfare.An electric probe-type cylinder test measured the displacement-time behavior of NEPE high-energy solid propellant,and the parameters of the Jones-Wilkins-Lee(JWL)equation of state(EOS)were derived using particle swarm optimization(PSO)with the Gurney energy model.Further,the parameters of JWL-Miller EOS,determined through AUTODYN simulations,were validated by comparing airburst process simulations with experimental overpressure data.The study established a method for determining EOS parameters of high-energy propellants,achieving a high degree of accuracy.The derived parameters ensure precise modeling of propellant behavior,offering a reliable foundation for future applications in solid rocket motor performance optimization and safety assessment.展开更多
In order to deal with the limitations during the register transfer level verification, a new functional verification method based on the random testing for the system-level of system-on-chip is proposed.The validity o...In order to deal with the limitations during the register transfer level verification, a new functional verification method based on the random testing for the system-level of system-on-chip is proposed.The validity of this method is proven theoretically.Specifically, testcases are generated according to many approaches of randomization.Moreover, the testbench for the system-level verification according to the proposed method is designed by using advanced modeling language.Therefore, under the circumstances that the testbench generates testcases quickly, the hardware/software co-simulation and co-verification can be implemented and the hardware/software partitioning planning can be evaluated easily.The comparison method is put to use in the evaluation approach of the testing validity.The evaluation result indicates that the efficiency of the partition testing is better than that of the random testing only when one or more subdomains are covered over with the area of errors, although the efficiency of the random testing is generally better than that of the partition testing.The experimental result indicates that this method has a good performance in the functional coverage and the cost of testing and can discover the functional errors as soon as possible.展开更多
A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censore...A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censored test,and figures out the approach to determine the prior distribution of the system failure rate by applying the reliability growth model to incorporate the multistage test data collected from system development.Furthermore,the procedure for the Bayesian sequential testing is derived for the failure rate of the exponential life system,which enables the decision to terminate or continue development test.Finally,a numerical example is given to illustrate the efficiency of the proposed model and procedure.展开更多
The pull-out capacities for soil nailing systems comprising of one single 29 mm diameter(type A) and four 16 mm diameter(type B) rebars with grouted cement were examined.A field test and numerical analysis for the typ...The pull-out capacities for soil nailing systems comprising of one single 29 mm diameter(type A) and four 16 mm diameter(type B) rebars with grouted cement were examined.A field test and numerical analysis for the type A and type B systems were carried out to investigate the pull-out capacities and the slope stability reinforcement efficiency in soil and rock slopes.The results of the pull-out tests show the mobilized shear force and load transfer characteristics with respect to soil depth.The load-displacement relationship was examined for both type A and type B systems.Slope stability analyses were carried out to study the relationships between soil and nail reinforcement and bending stiffness as well as combined axial tension and shear forces.Factors of safety were calculated in relation to the number of nails and their outside diameters.Both soil and rock slopes were included in this evaluation.展开更多
Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degrad...Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degradation mechanism of the RET is the same as the one of the normal stress condition. In order to check the consistency of two mechanisms, we conduct two enhancement tests with a missile servo system as an object of the study, and preprocess two sets of test data to establish the accelerated degradation models regarding the temperature change rate that is assumed to be the main applied stress of the servo system during the natural storage. Based on the accelerated degradation models and natural storage profile of the servo system, we provide and demonstrate a procedure to check the consistency of two mechanisms by checking the correlation and difference of two sets of degradation data. The results indicate that the two degradation mechanisms are significantly consistent with each other.展开更多
The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomi...The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomials depends on that of their edge polynomials. This paper transforms the interval quasipolynomials into two-dimensional (2-D) interval polynomials (2-D s-z hybrid polynomials), proves that the robust stability of interval 2-D polynomials are sufficient for the stability of given quasipolynomials. Thus, the stability test of interval quasipolynomials can be completed in 2-D s-z domain instead of classical 1-D s domain. The 2-D s-z hybrid polynomials should have different forms under the time delay properties of given quasipolynomials. The stability test proposed by the paper constructs an edge test set from Kharitonov vertex polynomials to reduce the number of testing edge polynomials. The 2-D algebraic tests are provided for the stability test of vertex 2-D polynomials and edge 2-D polynomials family. To verify the results of the paper to be correct and valid, the simulations based on proposed results and comparison with other presented results are given.展开更多
The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components of...The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.展开更多
In order to validate the simulation model and develop heave compensation control strategy,heave compensation model tests were performed.The model test installation includes themining ship motion simulator,the heave co...In order to validate the simulation model and develop heave compensation control strategy,heave compensation model tests were performed.The model test installation includes themining ship motion simulator,the heave compensation system,the lifting pipe simulator,the buffer simulator and the water pool.The tests ofmining ship motion simulator show that it is able to perform under the predetermined attitude path smoothly and can meet the requirements of themining ship motions.The heave compensation effect is more than 60% under random wave and the goal is set to be 50%.The model test results indicate that this heave compensation system is effective and feasible.展开更多
Thyristor valve is one of the key equipments for ultra high voltage direct current(UHVDC) power transmission projects.Before being installed on site,they need to be tested in a laboratory in order to verify their oper...Thyristor valve is one of the key equipments for ultra high voltage direct current(UHVDC) power transmission projects.Before being installed on site,they need to be tested in a laboratory in order to verify their operational performance to satisfy the technical specification of project related.Test facilities for operational tests of thyristor valves are supposed to enable to undertake more severe electrical stresses than those being applied in the thyristor valves under test(test objects).On the other hand,the stresses applied into the test objects are neither higher nor lower than specified by the specification,because inappropriate stresses applied would result in incorrect evaluation of performance on the test objects,more seriously,would cuase the damage of test objects with expensive cost losing.Generally,the process of operational tests is complicated and performed in a complex synthetic test circuit(hereafter as STC),where there are a lot of sensors used for measuring,monitoring and protection on line to ensure that the test circuit functions in good condition.Therefore,the measuring systems embedded play a core role in STC,acting like "eyes".Based on the first project of building up a STC in China,experience of planning measuring systems is summarized so as to be referenced by related engineers.展开更多
In order to research the effects of built-in test(BIT) on the system and select BITand test strategy,the complex repairable systems with BITequipment are modeled and simulated by using Simulink.Based on the model,the ...In order to research the effects of built-in test(BIT) on the system and select BITand test strategy,the complex repairable systems with BITequipment are modeled and simulated by using Simulink.Based on the model,the influences of different built-in test equipments,maintenance time and error probabilities on the system usability are evaluated.The simulation results showthat they effect on the system differently.The simulation method of complex system based on Simulink provides a technique approach to research the effects of BITon the system and select BITand test strategy.展开更多
Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed tha...Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed that the lifetime of the component in hybrid systems follows independent and identical modified Weibull distributions. The maximum likelihood estimations(MLEs)of the unknown parameters, acceleration factor and reliability indexes are derived by using the Newton-Raphson algorithm. The asymptotic variance-covariance matrix and the approximate confidence intervals are obtained based on normal approximation to the asymptotic distribution of MLEs of model parameters. Moreover,two bootstrap confidence intervals are constructed by using the parametric bootstrap method. The optimal time of changing stress levels is determined under D-optimality and A-optimality criteria.Finally, the Monte Carlo simulation study is carried out to illustrate the proposed procedures.展开更多
Test selection is to select the test set with the least total cost or the least total number from the alternative test set on the premise of meeting the required testability indicators.The existing models and methods ...Test selection is to select the test set with the least total cost or the least total number from the alternative test set on the premise of meeting the required testability indicators.The existing models and methods are not suitable for system level test selection.The first problem is the lack of detailed data of the units’fault set and the test set,which makes it impossible to establish a traditional dependency matrix for the system level.The second problem is that the system level fault detection rate and the fault isolation rate(referred to as"two rates")are not enough to describe the fault diagnostic ability of the system level tests.An innovative dependency matrix(called combinatorial dependency matrix)composed of three submatrices is presented.The first problem is solved by simplifying the submatrix between the units’fault and the test,and the second problem is solved by establishing the system level fault detection rate,the fault isolation rate and the integrated fault detection rate(referred to as"three rates")based on the new matrix.The mathematical model of the system level test selection problem is constructed,and the binary genetic algorithm is applied to solve the problem,which achieves the goal of system level test selection.展开更多
基金Projects(51878674,52108433,52022113) supported by the National Natural Science Foundation of ChinaProject(2019RS3009) supported by the Hunan Innovative Provincial Construction,China+2 种基金Project(2021JJ40587) supported by the Hunan Provincial Natural Science Foundation of ChinaProject(21B0309) supported by the Research Foundation of Education Bureau of Hunan Province,ChinaProject(HSR202004) supported by the Open Foundation of National Engineering Research Center of High-Speed Railway Construction Technology,China。
文摘China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of high speed trains moving on bridges when a strong earthquake happens.In the past decades,a bunch of theoretical and numerical studies have been conducted in the seismic dynamic field of high-speed railway.However,the effective dynamic test system for verifying the given method and theoretical results is still lacking.Therefore,a novel dynamic test system(DTS)consisting of a shaking table array and a train-pass-bridge reduced-scale model is proposed in this paper.Through some crucial technical problems discussion,the effectiveness of similar design scheme and the feasibility of reduced-scale DTS are elaborated,and then the detailed DTS structures are given and displayed as part-by-part.On this basis,the demonstration tests are conducted and compared with the numerical simulation.The results show that the proposed DTS is accurate and effective.Therefore,the DTS can provide a new physical simulation approach to study the high-speed train’s running safety on bridges under earthquakes and can also provide a reference for the construction of related systems.
基金Shan Dong Scientific Research Foundation for Excellent Young Scientists(Grant No:BS2011ZZ001)National Natural Science Foundation of China(Grant No.51105172)
文摘To ensure the accuracy and precision of vibration test,a universal checking method is proposed.The use of the method is discussed and an actual example is given.First,the calibration of the 7703A-500 type sensor is analyzed on the basis of frequency response method.The frequency range of normal working can be determined by the exact calibration of sensitivity,frequency response and linearity.For the basic problem of abnormal signals appearing in test system,the method of zero check and loading vibration source are developed.The frequency spectrum of output signals is employed to distinguish the noise signal,unknown source signal and useful signal effectively.Finally,the experimental results reveal the importance to improve the accuracy of the results of practical vibration test.
文摘Sand/dust test is one of the key projects to examine the environmental adaptability of ordnance equipment.In order to decrease the abrasion of test facility caused by the sand/dust particles,the particles contained in the airflowneed to be reclaimed effectively.Amathematical model of Useparator is established.The flowfield and the trajectories of particles inside the separator are obtained using a numerical simulation method,and the separation efficiency and pressure drop of separator with different rows of separate components are also obtained at various flowvelocities.The simulation results indicate that the efficiency of U inertia separator is affected by the flowvelocity evidently,and a reasonably designed separator can meet the requirement of the separation efficiency in particular situation.The results can be use as reference for the design and test of sand/dust separate systems.
文摘Digital radiographic(DR)testing equipment has been widely promoted and applied in the inspection of circumferential welds in oil and gas pipelines.In order to establish a comprehensive quality control system for digital radiographic testing and fully evaluate the integrated system inspection ability of equipment,personnel,and processes,a scientific and standardized evaluation method to the system is very necessary.Here investigates the precedents of relevant non-destructive testing evaluation methods at home and abroad,considers the testing characteristics of DR equipment,develops a complete set of DR testing system evaluation procedures.It deeply studies the adaptability methods of program processes from defect production to slicing processing and data statistical calculation for digital radiographic testing evaluation.To check the repeatability and reliability of the detectable system,five process welds with 200 real metallographic defects were fabricated in the laboratory.From the detected results,the DR system has good repeatability in image quality,and the detectable defect size reaches 0.85 mm under achieving 90%detection probability at a confidence level of 95%,the error of detected defect length is±2 mm,and the error of detected defect localization is±5 mm.The qualitative and quantitative detection of defects are accurate and reliable.The test further confirmed the reliable detection ability of the DR detection system,and fully validated the scientific and practical evaluation method designed.The research on the evaluation test method can serve as an important link in the quality control system for the on-site application of digital ray equipment in long-distance pipelines.The designed program,test,and evaluation content can serve as an important basis for the formulation of relevant specifications or standards.
基金supported by the National Key R&D Program of China(2022YFA1602200)the International Partnership Program of the Chinese Academy of Sciences(211134KYSB20200057).
文摘The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.
文摘Plant roots are widely known to provide mechanical reinforcement to soils against shearing and further increase slope stability.However,whether roots provide reinforcement to loess cyclic re-sistance and how various factors affect roots reinforcement during seismic loading have rarely been studied.The objective is to conduct a series of cyclic direct simple shear tests and DEM numerical simulation to investigate the cyclic behaviour of rooted loess.The effects of initial static shear stress and loading frequency on the cyclic resistance of root-soil composites were first investigated.After that,cyclic direct simple shear simulations at constant volume were carried out based on the discrete element method(PFC^(3D))to investigate the effects of root geome-try,mechanical traits and root-soil bond strength on the cyclic strength of rooted loess.It was discovered that the roots could effectively improve the cyclic resistance of loess.The cyclic resistance of the root-soil composite decreases with the increase of the initial shear stress,then increases,and improves with the increase of the frequency.The simulation result show that increases in root elastic modulus and root-soil interfacial bond strength can all enhance the cyclic resistance of root-soil composites,and the maximum cyclic resistance of the root-soil composite was obtained when the initial inclination angle of the root system was 90°.
基金supported by the National Natural Science Foundation of China(62073267,61903305)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test.
基金supported by"the Fundamental Research Funds for the Central Universities",No.30924010503.
文摘With the development of high energy solid propellants,it is critical to evaluate the safety and power performance of solid propellants in the face of threats such as unmanned aerial vehicles(UAVs)when transporting and using them in contemporary warfare.An electric probe-type cylinder test measured the displacement-time behavior of NEPE high-energy solid propellant,and the parameters of the Jones-Wilkins-Lee(JWL)equation of state(EOS)were derived using particle swarm optimization(PSO)with the Gurney energy model.Further,the parameters of JWL-Miller EOS,determined through AUTODYN simulations,were validated by comparing airburst process simulations with experimental overpressure data.The study established a method for determining EOS parameters of high-energy propellants,achieving a high degree of accuracy.The derived parameters ensure precise modeling of propellant behavior,offering a reliable foundation for future applications in solid rocket motor performance optimization and safety assessment.
基金supported by the National High Technology Research and Development Program of China (863 Program) (2002AA1Z1490)Specialized Research Fund for the Doctoral Program of Higher Education (20040486049)the University Cooperative Research Fund of Huawei Technology Co., Ltd
文摘In order to deal with the limitations during the register transfer level verification, a new functional verification method based on the random testing for the system-level of system-on-chip is proposed.The validity of this method is proven theoretically.Specifically, testcases are generated according to many approaches of randomization.Moreover, the testbench for the system-level verification according to the proposed method is designed by using advanced modeling language.Therefore, under the circumstances that the testbench generates testcases quickly, the hardware/software co-simulation and co-verification can be implemented and the hardware/software partitioning planning can be evaluated easily.The comparison method is put to use in the evaluation approach of the testing validity.The evaluation result indicates that the efficiency of the partition testing is better than that of the random testing only when one or more subdomains are covered over with the area of errors, although the efficiency of the random testing is generally better than that of the partition testing.The experimental result indicates that this method has a good performance in the functional coverage and the cost of testing and can discover the functional errors as soon as possible.
基金supported by the National Natural Science Foundation of China (70571083)the Research Fund for the Doctoral Program of Higher Education of China (20094307110013)
文摘A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censored test,and figures out the approach to determine the prior distribution of the system failure rate by applying the reliability growth model to incorporate the multistage test data collected from system development.Furthermore,the procedure for the Bayesian sequential testing is derived for the failure rate of the exponential life system,which enables the decision to terminate or continue development test.Finally,a numerical example is given to illustrate the efficiency of the proposed model and procedure.
文摘The pull-out capacities for soil nailing systems comprising of one single 29 mm diameter(type A) and four 16 mm diameter(type B) rebars with grouted cement were examined.A field test and numerical analysis for the type A and type B systems were carried out to investigate the pull-out capacities and the slope stability reinforcement efficiency in soil and rock slopes.The results of the pull-out tests show the mobilized shear force and load transfer characteristics with respect to soil depth.The load-displacement relationship was examined for both type A and type B systems.Slope stability analyses were carried out to study the relationships between soil and nail reinforcement and bending stiffness as well as combined axial tension and shear forces.Factors of safety were calculated in relation to the number of nails and their outside diameters.Both soil and rock slopes were included in this evaluation.
基金supported by the Natural Science Foundation of Hunan Province(2018JJ2282)
文摘Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degradation mechanism of the RET is the same as the one of the normal stress condition. In order to check the consistency of two mechanisms, we conduct two enhancement tests with a missile servo system as an object of the study, and preprocess two sets of test data to establish the accelerated degradation models regarding the temperature change rate that is assumed to be the main applied stress of the servo system during the natural storage. Based on the accelerated degradation models and natural storage profile of the servo system, we provide and demonstrate a procedure to check the consistency of two mechanisms by checking the correlation and difference of two sets of degradation data. The results indicate that the two degradation mechanisms are significantly consistent with each other.
基金This project was supported by the National Science Foundation of China (60572093).
文摘The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomials depends on that of their edge polynomials. This paper transforms the interval quasipolynomials into two-dimensional (2-D) interval polynomials (2-D s-z hybrid polynomials), proves that the robust stability of interval 2-D polynomials are sufficient for the stability of given quasipolynomials. Thus, the stability test of interval quasipolynomials can be completed in 2-D s-z domain instead of classical 1-D s domain. The 2-D s-z hybrid polynomials should have different forms under the time delay properties of given quasipolynomials. The stability test proposed by the paper constructs an edge test set from Kharitonov vertex polynomials to reduce the number of testing edge polynomials. The 2-D algebraic tests are provided for the stability test of vertex 2-D polynomials and edge 2-D polynomials family. To verify the results of the paper to be correct and valid, the simulations based on proposed results and comparison with other presented results are given.
基金supported by the Natural Science Foundation of Shannxi Province(2017JQ5016)the Joint Laboratory for Sea Measurement and Control of Aircraft(DOM2016OF011)
文摘The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.
基金Project(50675226) supported by the National Natural Science Foundation of China Project(DYXM-115-04-02-01) supported by the Eleventh Five-Year Plan of China
文摘In order to validate the simulation model and develop heave compensation control strategy,heave compensation model tests were performed.The model test installation includes themining ship motion simulator,the heave compensation system,the lifting pipe simulator,the buffer simulator and the water pool.The tests ofmining ship motion simulator show that it is able to perform under the predetermined attitude path smoothly and can meet the requirements of themining ship motions.The heave compensation effect is more than 60% under random wave and the goal is set to be 50%.The model test results indicate that this heave compensation system is effective and feasible.
基金Project Supported by National Development and Reform Commission(No.[2006]2709)
文摘Thyristor valve is one of the key equipments for ultra high voltage direct current(UHVDC) power transmission projects.Before being installed on site,they need to be tested in a laboratory in order to verify their operational performance to satisfy the technical specification of project related.Test facilities for operational tests of thyristor valves are supposed to enable to undertake more severe electrical stresses than those being applied in the thyristor valves under test(test objects).On the other hand,the stresses applied into the test objects are neither higher nor lower than specified by the specification,because inappropriate stresses applied would result in incorrect evaluation of performance on the test objects,more seriously,would cuase the damage of test objects with expensive cost losing.Generally,the process of operational tests is complicated and performed in a complex synthetic test circuit(hereafter as STC),where there are a lot of sensors used for measuring,monitoring and protection on line to ensure that the test circuit functions in good condition.Therefore,the measuring systems embedded play a core role in STC,acting like "eyes".Based on the first project of building up a STC in China,experience of planning measuring systems is summarized so as to be referenced by related engineers.
文摘In order to research the effects of built-in test(BIT) on the system and select BITand test strategy,the complex repairable systems with BITequipment are modeled and simulated by using Simulink.Based on the model,the influences of different built-in test equipments,maintenance time and error probabilities on the system usability are evaluated.The simulation results showthat they effect on the system differently.The simulation method of complex system based on Simulink provides a technique approach to research the effects of BITon the system and select BITand test strategy.
基金supported by the National Natural Science Foundation of China(71401134 71571144+1 种基金 71171164)the Program of International Cooperation and Exchanges in Science and Technology Funded by Shaanxi Province(2016KW-033)
文摘Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed that the lifetime of the component in hybrid systems follows independent and identical modified Weibull distributions. The maximum likelihood estimations(MLEs)of the unknown parameters, acceleration factor and reliability indexes are derived by using the Newton-Raphson algorithm. The asymptotic variance-covariance matrix and the approximate confidence intervals are obtained based on normal approximation to the asymptotic distribution of MLEs of model parameters. Moreover,two bootstrap confidence intervals are constructed by using the parametric bootstrap method. The optimal time of changing stress levels is determined under D-optimality and A-optimality criteria.Finally, the Monte Carlo simulation study is carried out to illustrate the proposed procedures.
基金supported by the National Natural Science Foundation of China(51605482)the Equipment Pre-research Project(41403020101).
文摘Test selection is to select the test set with the least total cost or the least total number from the alternative test set on the premise of meeting the required testability indicators.The existing models and methods are not suitable for system level test selection.The first problem is the lack of detailed data of the units’fault set and the test set,which makes it impossible to establish a traditional dependency matrix for the system level.The second problem is that the system level fault detection rate and the fault isolation rate(referred to as"two rates")are not enough to describe the fault diagnostic ability of the system level tests.An innovative dependency matrix(called combinatorial dependency matrix)composed of three submatrices is presented.The first problem is solved by simplifying the submatrix between the units’fault and the test,and the second problem is solved by establishing the system level fault detection rate,the fault isolation rate and the integrated fault detection rate(referred to as"three rates")based on the new matrix.The mathematical model of the system level test selection problem is constructed,and the binary genetic algorithm is applied to solve the problem,which achieves the goal of system level test selection.