Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is pro...Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.展开更多
Strategic management of equipment system develop-ment must attach importance to effective strategic risk manage-ment.Aiming at the identification of strategic risk of equipment system development,firstly,the source of...Strategic management of equipment system develop-ment must attach importance to effective strategic risk manage-ment.Aiming at the identification of strategic risk of equipment system development,firstly,the source of strategic risk of equip-ment system development is analyzed and classified.Based on this,a causal loop diagram of strategic risk of equipment sys-tem development based on system dynamics is established.The system dynamics analysis software Vensim PLE is used to carry out the risk influencing factors analysis,risk consequences ana-lysis,risk feedback loop identification and corresponding pre-control measures,and achieves a good risk identification effect.展开更多
This paper employs system dynamics to explore how the synergy between technology management and technological capability affects new product development.The results show that the synergy between technology management ...This paper employs system dynamics to explore how the synergy between technology management and technological capability affects new product development.The results show that the synergy between technology management and technological capability has positive impact on new product development.Moreover, the leading synergy processes between technology management and technological capability in different new product development stages are different.This paper deepens the theoretical understanding of how to achieve new product development, and also provides useful guidance for firms to implement new product development.展开更多
System dynamics, founded by professor Forrester at Massachusetts Institute of Technology in 1956, is a discipline which analyzes and studies the system of information feedback. Basic views of theories of system dynami...System dynamics, founded by professor Forrester at Massachusetts Institute of Technology in 1956, is a discipline which analyzes and studies the system of information feedback. Basic views of theories of system dynamics distinctively show its dialectical characteristics. More attention should be paid to the features of complicated nonlinear systems. The model simulation of system dynamics is a kind of structure-function simulation. One of the remarkable advantages of system dynamics is that it can handle problems of high order, nonlinear and multiplefeedback system.展开更多
Resource management must attach importance to effective resource deployment.Aiming at the research of resource deployment system,firstly,as an important factor of resource deployment system,corporate technological inn...Resource management must attach importance to effective resource deployment.Aiming at the research of resource deployment system,firstly,as an important factor of resource deployment system,corporate technological innovation social responsibility(CISR)is analyzed.Based on this,this paper constructs a system dynamics model to analyze the changes in resource deployment system affected by CISR.The simulation model is developed using Venism personal learning edition(PLE).The results show that CISR,acted as a new factor affecting the resource deployment system,has a positive effect on resource deployment system performance.Moreover,when CISR exceeds the threshold value,the resource deployment system performance increases significantly faster,reflecting that the resource deployment system becomes more efficient.The results show that the method proposed in this paper is feasible and efficient.This research provides theoretical and practical implications for resource deployment system research.展开更多
The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational eff...The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.展开更多
To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game mod...To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game model of gov-ernment,commercial banks,and automobile enterprises;introduced a dynamic reward and punishment mechanism;and analyzed the development process of the three parties’strategic behavior under the static and dynamic reward and punish-ment mechanism.Vensim PLE was used for numerical simulation analysis.Our results indicate that the system could not reach a stable state under the static reward and punishment mechanism.A dynamic reward and punishment mechanism can effectively improve the system stability and better fit real situations.Under the dynamic reward and punishment mechan-ism,an increase in the initial probabilities of the three parties can promote the system stability,and the government can im-plement effective supervision by adjusting the upper limit of the reward and punishment intensity.Finally,the implementa-tion of green credit by commercial banks plays a significant role in promoting the green development of automobile enter-prises.展开更多
In this paper,the effects of a right-angle windbreak transition(RWT)from the flat ground to cutting on train aerodynamic and dynamic responses were investigated,then a mitigation measure,an oblique structure transitio...In this paper,the effects of a right-angle windbreak transition(RWT)from the flat ground to cutting on train aerodynamic and dynamic responses were investigated,then a mitigation measure,an oblique structure transition(OST)was proposed to reduce the impact of RWT on the train aerodynamic and dynamic performance.The results showed that in the RWT region,the airflow was divided into two parts.One part of the airflow induced a strong backflow in the flat ground position,and the other part of the airflow induced a strong backflow in the cutting position.Therefore,there were two lateral impacts on the train.For the head car with the OST,the drop ratios of the peak-to-peak values compared with RWT were 47%,40%,and 52%for the side force coefficient C_(Fy),lift force coefficient C_(Fz) and overturning moment coefficient C_(Mx),respectively.For the peak-to-peak value of the dynamic parameters,the drop ratios of OST compared with RWT were all larger than 50%.The maximum dynamic overturning coefficients for RWT and OST were 0.75 and 0.3,respectively.展开更多
Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its p...Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its prediction. Actual wheel profiles of the high-speed trains on service were measured in the high-speed line and the wear characteristics were analyzed which came to the following results. The wear location was centralized from-15 mm to 25 mm. The maximum wear value appeared at the area of 5 mm from tread center far from wheel flange and it was less than 1.5 mm. Then, wheel wear was fitted to get the polynomial functions on different locations and operation mileages. A binary numerical prediction model was raised to predict wheel wear. The prediction model was proved by vehicle system dynamics and wheel/rail contact geometry. The results show that the prediction model can reflect wear characteristics of measured profiles and vehicle performances.展开更多
文摘Based on the system dynamic model, a full system dynamics estimation method is proposed for a chain shell magazine driven by a permanent magnet synchronous motor(PMSM). An adaptive extended state observer(AESO) is proposed to estimate the unmeasured states and disturbance, in which the model parameters are adjusted in real time. Theoretical analysis shows that the estimation errors of the disturbances and unmeasured states converge exponentially to zero, and the parameter estimation error can be obtained from the extended state. Then, based on the extended state of the AESO, a novel parameter estimation law is designed. Due to the convergence of AESO, the novel parameter estimation law is insensitive to controllers and excitation signal. Under persistent excitation(PE) condition, the estimated parameters will converge to a compact set around the actual parameter value. Without PE signal, the estimated parameters will converge to zero for the extended state. Simulation and experimental results show that the proposed method can accurately estimate the unmeasured states and disturbance of the chain shell magazine, and the estimated parameters will converge to the actual value without strictly continuous PE signals.
文摘Strategic management of equipment system develop-ment must attach importance to effective strategic risk manage-ment.Aiming at the identification of strategic risk of equipment system development,firstly,the source of strategic risk of equip-ment system development is analyzed and classified.Based on this,a causal loop diagram of strategic risk of equipment sys-tem development based on system dynamics is established.The system dynamics analysis software Vensim PLE is used to carry out the risk influencing factors analysis,risk consequences ana-lysis,risk feedback loop identification and corresponding pre-control measures,and achieves a good risk identification effect.
基金supported by the Heilongjiang Philosophy and Social Science Research Project (19GLB087)。
文摘This paper employs system dynamics to explore how the synergy between technology management and technological capability affects new product development.The results show that the synergy between technology management and technological capability has positive impact on new product development.Moreover, the leading synergy processes between technology management and technological capability in different new product development stages are different.This paper deepens the theoretical understanding of how to achieve new product development, and also provides useful guidance for firms to implement new product development.
文摘System dynamics, founded by professor Forrester at Massachusetts Institute of Technology in 1956, is a discipline which analyzes and studies the system of information feedback. Basic views of theories of system dynamics distinctively show its dialectical characteristics. More attention should be paid to the features of complicated nonlinear systems. The model simulation of system dynamics is a kind of structure-function simulation. One of the remarkable advantages of system dynamics is that it can handle problems of high order, nonlinear and multiplefeedback system.
基金supported by the National Natural Science Foundation of China(72072047)the Fundamental Research Funds for the Central Universities(HIT.HSS.ESD202310)+3 种基金the Research Project on Graduates’Education and Teaching Reform of HIT(23MS011)the research Project on Higher Education of Heilongjiang Higher Education Association(23GJYBC011)the Natural Science Foundation of Shandong Province(ZR2023QG010)the Shandong Philosophy and Social Science Research Project(22CSDJ03).
文摘Resource management must attach importance to effective resource deployment.Aiming at the research of resource deployment system,firstly,as an important factor of resource deployment system,corporate technological innovation social responsibility(CISR)is analyzed.Based on this,this paper constructs a system dynamics model to analyze the changes in resource deployment system affected by CISR.The simulation model is developed using Venism personal learning edition(PLE).The results show that CISR,acted as a new factor affecting the resource deployment system,has a positive effect on resource deployment system performance.Moreover,when CISR exceeds the threshold value,the resource deployment system performance increases significantly faster,reflecting that the resource deployment system becomes more efficient.The results show that the method proposed in this paper is feasible and efficient.This research provides theoretical and practical implications for resource deployment system research.
基金supported by the National Natural Science Foundation of China (Grant Number:12372093)。
文摘The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.
基金supported by the National Natural Science Foundation of China(71973001).
文摘To explore the green development of automobile enterprises and promote the achievement of the“dual carbon”target,based on the bounded rationality assumptions,this study constructed a tripartite evolutionary game model of gov-ernment,commercial banks,and automobile enterprises;introduced a dynamic reward and punishment mechanism;and analyzed the development process of the three parties’strategic behavior under the static and dynamic reward and punish-ment mechanism.Vensim PLE was used for numerical simulation analysis.Our results indicate that the system could not reach a stable state under the static reward and punishment mechanism.A dynamic reward and punishment mechanism can effectively improve the system stability and better fit real situations.Under the dynamic reward and punishment mechan-ism,an increase in the initial probabilities of the three parties can promote the system stability,and the government can im-plement effective supervision by adjusting the upper limit of the reward and punishment intensity.Finally,the implementa-tion of green credit by commercial banks plays a significant role in promoting the green development of automobile enter-prises.
基金Project(2020YFA0710903)supported by the National Key R&D Program of ChinaProject(U1334205)supported by the National Natural Science Foundation of ChinaProject(1-W16W)supported by the Hong Kong Polytechnic University's Postdoc Matching Fund Scheme,China。
文摘In this paper,the effects of a right-angle windbreak transition(RWT)from the flat ground to cutting on train aerodynamic and dynamic responses were investigated,then a mitigation measure,an oblique structure transition(OST)was proposed to reduce the impact of RWT on the train aerodynamic and dynamic performance.The results showed that in the RWT region,the airflow was divided into two parts.One part of the airflow induced a strong backflow in the flat ground position,and the other part of the airflow induced a strong backflow in the cutting position.Therefore,there were two lateral impacts on the train.For the head car with the OST,the drop ratios of the peak-to-peak values compared with RWT were 47%,40%,and 52%for the side force coefficient C_(Fy),lift force coefficient C_(Fz) and overturning moment coefficient C_(Mx),respectively.For the peak-to-peak value of the dynamic parameters,the drop ratios of OST compared with RWT were all larger than 50%.The maximum dynamic overturning coefficients for RWT and OST were 0.75 and 0.3,respectively.
基金Project(U1234208)supported by the Major Program of the National Natural Science Foundation of ChinaProject(2013J008-A)supported by the Research and Development Plan of Major Tasks in Science and Technology China Railways Co.Ltd.,China
文摘Wheel/rail relationship is a fundamental problem of railway system. Wear of wheel profiles has great effect on vehicle performance. Thus, it is important not just for the analysis of wear characteristics but for its prediction. Actual wheel profiles of the high-speed trains on service were measured in the high-speed line and the wear characteristics were analyzed which came to the following results. The wear location was centralized from-15 mm to 25 mm. The maximum wear value appeared at the area of 5 mm from tread center far from wheel flange and it was less than 1.5 mm. Then, wheel wear was fitted to get the polynomial functions on different locations and operation mileages. A binary numerical prediction model was raised to predict wheel wear. The prediction model was proved by vehicle system dynamics and wheel/rail contact geometry. The results show that the prediction model can reflect wear characteristics of measured profiles and vehicle performances.