A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach (SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in lab...A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach (SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in laboratory through collection soil samples of study site. Ten treatments of application different fertilizers were designed such as CK, optimum treatment (N, P, K, Zn), N(P, K, Zn), P(N, K, Zn), K(N, P, Zn), +Mg(N, P, K, Zn, Mg), Zn (N,P,K), +2P(N, 2P, K, Zn), +2K(N, P, 2K, Zn), and 2N+2P+2K(2N, 2P, 2K, Zn) for field experiment to test the effect on tree height, diameter (DBH) growth, and dry weight of poplar. The results showed that there was no significant difference in tree heights between treatments with different fertilizers, diameter growth of poplar trees in treatments of lack of N and Zn was significantly slower than that of trees in optimum treatment, and dry weight of poplar dropped significantly for treatment of CK as well as treatments without application N and Zn. It is concluded that N and Zn were main limiting factor for poplar growth. Results from laboratory analysis and field experiment were uniform per-fectly, which proved that SNSA was reliable in evaluating soil nutrient status of poplar plantation.展开更多
A study was conducted to evaluate the status of soil nutrients under E. grandis plantation in comparison with that in its adjacent submontane rain forest. Twenty sequare plots, with an area of 20 m×20 m for each,...A study was conducted to evaluate the status of soil nutrients under E. grandis plantation in comparison with that in its adjacent submontane rain forest. Twenty sequare plots, with an area of 20 m×20 m for each, were established in both of E.grandis plantation and its adjacent sub-montane rain forest, independently. Soil samples were collected from each square plot, at five points (at the four comers and at the center) of each plot. The collected soil samples were mixed to make a composite and representative sample for each plot, independently. The analyses were done in a soil laboratory following appropriate methods. The analysis result indicated that there were no significance differences between E. grandis plantation and its adjacent sub-montane rain forest in the level of major soil nutrients (total N, available P, exchangeable K, Ca and Mg), pH and total carbon of soils (p 〈 0.05). There were significance differences between two sites of forest soils in percentage of clay particles, and exchangeable Na content. E. grandis plantation was found improving soil nutrients and total carbon as compared with that of its adjacent submontane rain forest.展开更多
Fire has been used to prepare land during tree plantation establishment for many years but uncertainty about how ecosystems respond to prescribed burning makes it difficult to predict the effects of fire on soil nutri...Fire has been used to prepare land during tree plantation establishment for many years but uncertainty about how ecosystems respond to prescribed burning makes it difficult to predict the effects of fire on soil nutrients.The aim of this study was to determine the effect of burning accumulated forest residues(slash)on soil chemical properties and how trees respond.We analyzed 40 burned and unburned sites and compared growth of Eucalyptus grandis W.Hill ex Maiden between sites.Soil pH increased by 39%after fire,suggesting reduced soil acidity and increased liming.Total nitrogen increased by 100%;other nutrients(Ca^2+,Mg^2+and K^+)also increased.Increase in nutrients had a significant effect on the growth of E.grandis;larger and taller trees were associated more with burned than unburned sites.This study provides evidence that burning accumulated slash during land preparation prior to plantation establishment alters soil nutrient status and enhances the growth of E.grandis.展开更多
The annual dynamic changes of soil nutrients were measured in pure larch plantation and in mixed larch plantation in the arboretum of Inner Mongolia Academy of Forestry Science, Huhehaote. The results showed that soil...The annual dynamic changes of soil nutrients were measured in pure larch plantation and in mixed larch plantation in the arboretum of Inner Mongolia Academy of Forestry Science, Huhehaote. The results showed that soil nutrients in pure larch plantations changed rapidly in July and August. The variation of soil nutrients is more stable in mixed larch plantation. Compared with the pure larch plantation, the content of soil nutrients in mixed larch plantation obviously increased. The soil degradation occurred in the pure larch plantation, and related to the forest age.展开更多
An investigation on soil organic carbon, total N and P, NO3-N, available P, microbial biomass C, N and P, basal respiration and metabolic quotients (qCO2) was conducted to compare differences in soil microbial prope...An investigation on soil organic carbon, total N and P, NO3-N, available P, microbial biomass C, N and P, basal respiration and metabolic quotients (qCO2) was conducted to compare differences in soil microbial properties and nutrients between 15-year-old pure Chinese fir (Cunninghamia lanceolata) and two mixed Chinese fir plantations (mixed plantations with Alnus crernastogyne, mixed plantations with Kalopanax septemlobus) at Huitong Experimental Station of Forest Ecology (26°45′N latitude and 109°30′E longitude), Chinese Academy of Sciences in May, 2005. Results showed that the concentrations of soil organic carbon, total N, NO3^--N, total P and available P in mixed plantations were higher than that in pure plantation. Soil microbial biomass N in two mixed plantations was averagely higher 69% and 61% than that in pure plantation at the 0-10 cm and 10-20 cm soil depth, respectively. Soil microbial biomass C, P and basal respiration in mixed plantations were higher 11%, 14% and 4% at the 0-10 cm soil depth and 6%, 3% and 3% at the 10-20 cm soil depth compared with pure plantation. However, soil microbial C: N ratio and qCO2 were averagely lower 34% and 4% in mixed plantations than pure plantation. Additionally, there was a closer relation between soil microbial biomass and soil nutrients than between basal respiration, microbial C: N ratio and qCO2 and soil nutrients. In conclusion, introduction of broad-leaved tree species into pure coniferous plantation improved soil microbial properties and soil fertility, and can be helpful to restore degraded forest soil.展开更多
In August 2003, we investigated spatial pattern in soil carbon and nutrients in the Alpine tundra of Changbai Moun-tain, Jilin Province, China. The analytical results showed that the soil C concentrations at different...In August 2003, we investigated spatial pattern in soil carbon and nutrients in the Alpine tundra of Changbai Moun-tain, Jilin Province, China. The analytical results showed that the soil C concentrations at different depths were significantly (p<0.05) higher in Meadow alpine tundra vegetation than that in other vegetation types; the soil C (including inorganic carbon) concentrations at layer below 10 cm are significantly (p<0.05) higher than at layer of 1020 cm among the different vegetation types; the spatial distribution of soil N concentration at top surface of 0-10 cm depth was similar to that at 1020 cm; the soil P concentrations at different depths were significantly (p<0.05) lower at Lithic alpine tundra vegetation than that at other vegetation types; soil K concentration was significantly (p<0.05) higher in Felsenmeer alpine tundra vegetation and Lithic alpine tundra vegetation than that in Typical alpine tundra, Meadow alpine tundra, and Swamp alpine tundra vegetations.. However, the soil K had not significant change at different soil depths of each vegetation type. Soil S concentration was dramatically higher in Meadow alpine tundra vegetation than that in other vegetation types. For each vegetation type, the ratios of C: N, C: P, C: K and C: S generally decreased with soil depth. The ratio of C: N was significantly higher at 010 cm than that at 1020 cm for all vegetation types except at the top layer of the Swamp alpine tundra vegetation. Our study showed that soil C and nutrients storage were significantly spatial heterogeneity.展开更多
To better understand the effects of forest suc- cession on soil microbial activity, a comparison of soil microbial properties and nutrients was conducted between three forest types representing a natural forest succes...To better understand the effects of forest suc- cession on soil microbial activity, a comparison of soil microbial properties and nutrients was conducted between three forest types representing a natural forest succession chronosequence. The study compared a pine (Pinus mas- soniana) forest (PF), a pine and broadleaf mixed forest (MF) and an evergreen broadleaf forest (BF), in the Yingzuijie Biosphere Reserve, Hunan Province, China. Results showed that soil nutrients in the MF and BF plots were higher than in the PF plots. The range in microbial biomass carbon followed a similar pattem with Be havingthe greatest values, 522-1022 mg kg-1, followed by Mr 368-569 mg kg-1, and finally, PF 193--449 mg kg-1. Soil nutrients were more strongly correlated with microbial biomass carbon than basal respiration or metabolic quo- tient. Overall, forest succession in the study site improved soil microbial properties and soil fertility, which in turn can increase primary productivity and carbon sequestration.展开更多
The fluxes of masses and the nutrients Ca,Mg,K,N,P and S were determined in the litterfall of two adjacent forest ecosystems of Hungarian oak(Quercus frainetto L.)and European beech(Fagus sylvatica L.)in a mountainous...The fluxes of masses and the nutrients Ca,Mg,K,N,P and S were determined in the litterfall of two adjacent forest ecosystems of Hungarian oak(Quercus frainetto L.)and European beech(Fagus sylvatica L.)in a mountainous area of northeastern Greece in 2010–2015.The foliar litterfall for both species reached about 70%of the total litterfall,and was significantly higher from the other two fractions(woody and rest litterfall).The fluxes of masses and nutrients were compared between ecosystems for each fraction separately.Only one significant statistical difference was found,that of K in the woody litterfall.In addition,the stocks of masses and nutrients were calculated in the forest floors and mineral soils of the two ecosystems.Likewise,the stocks of nutrients in the forest floors and mineral soils were compared between ecosystems.In the L horizon of the forest floors,statistical differences,as a result of species effect,were found for the stocks of Ca and N.In the FH horizons,the masses and all the nutrient stocks differed significantly,as the beech plot had much higher quantities of organic matter and nutrients.These higher quantities were probably due to low soil temperatures(microclimate)and high acidity in the beech plot(species effect)that slowed down decomposition.In the mineral soils,the propagation of random error derived from random errors of the individual soil layers was an important factor in the statistical comparisons.Because of the soil acidity in the beech plot,the stocks of exchangeable base cations were significantly higher in the oak plot,whereas the other nutrient stocks did not differ.展开更多
Teak (Tectona grandis L.f.) is widely planted in the world due to its high market demand, economic, ecological and social value. Its plantations have mostly been established and expanded into sites that are acidic t...Teak (Tectona grandis L.f.) is widely planted in the world due to its high market demand, economic, ecological and social value. Its plantations have mostly been established and expanded into sites that are acidic to severely acidic in southern China. But, there are no available and specific evidence-based nutrient management techniques. To better recognize and understand the relationship between teak tree growth and nutrient content in the foliage and soil and establish nutrient norms are critical to optimally manage these young plantations. We studied the foliar nutrient and soil chemistry in 19 representative teak plantations aged 5-8 years. Regression analysis indicated that the mean annual increment of teak volume was linearly and positively correlated with foliar N, Ca, Fe and B concentrations, with soil base saturation percentage, available P and Zn concentrations, and negatively correlated with soil Al concentration. Only if the Ca and Mg contents in soil were enhanced, could the increase in soil base saturation percentage benefit teak growth. A revised classification of low-and high-yielding stands was established by using a sorting method of principal components over 6 foliar macro and 8 micro elements in a Diagnosis and Recommendation Integrated System (DRIS). Specific DRIS norms for teak plantations in acid soils were derived. The nutrient balance of N, P, K Ca, Mg, Zn, B with Fe or A1, Ca with Mg, and Fe with AI provided a key to promote the growth of teak in acid soils. Meanwhile, soil Zn was also found as a primary trace element that affected teak growth in this study.展开更多
The response of soil fauna to the litter decomposition process has received considerable attention,but this effect has not been fully examined in agroforestry systems.A 1-year in situ decomposition experiment was carr...The response of soil fauna to the litter decomposition process has received considerable attention,but this effect has not been fully examined in agroforestry systems.A 1-year in situ decomposition experiment was carried out in a pure ginkgo plantation and two ginkgo agroforestry systems using a litterbag method(11 different treatments were tested in three systems).We found that the application of different organic materials(crop residues)produced positive effects on the number of soil fauna in the ginkgo planting systems;the mixture of ginkgo leaves and corn leaves was the best performing treatment.Collembola and Acarina were the predominant groups in the litter bags and were mainly responsible for the differences among the treatments.Litter mixing promoted the abundance,richness,and diversity of soil fauna,and significant differences regarding the Shannon–Wiener index of the soil fauna were observed among the 11 treatments in July.Significantly higher soil MBC(microbial biomass carbon)and MBN(microbial biomass nitrogen)were observed in agroforestry systems than in pure ginkgo plantations.These results suggest that the practice of intercrop residue application plays an important role in enhancing soil ecosystem function in ginkgo agroforestry systems and may ultimately contribute to sustainable intercrop production,soil fertility,and local economic diversity.展开更多
Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relative...Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 5400 stems-ha^-1 ( -〉 3.0 cm DBH); 64% of those stems were smaller than 10 cm DBH. The total basal area was 54.4 m^2-ha^-1, of which Castanopsis sieboldii contributed 48%. The forest showed high species diversity of trees. 80 tree species (≥ 3.0 cm DBH) from 31 families was identified in the thirty sampling plots. C. sieboldii and Schima wallichii were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were, 3.36 for Diversity index (H'), 0.71 for Equitability index (J') and 4.72 for Species richness index (S'), all of which strongly declined with the increase of importance value of the dominant, C. sieboldii. Measures of soil nutrients indicated low fertility, extreme heterogeneity and possible A1 toxicity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil exchangeable K^+, Ca^2+, and Ca^2+/Al^3- ratio (all p values 〈0.001) and a negative relationship with N, C and P. The results suggest that soil property is a major factor influencing forest composition and structure within the subtropical forest in Okinawa.展开更多
基金The study was supported by PPI/PPIC China Program (No. HB-19) and Wetland Laboratory Opening Foundation of Hubei Province (No. HNKFJ20021301).
文摘A study was conducted to evaluate the soil nutrient status of poplar plantation by Soil Nutrient Systematic Approach (SNSA) in Jianghan Plain, Hubei Province, China. Soil physiochemical properties were analyzed in laboratory through collection soil samples of study site. Ten treatments of application different fertilizers were designed such as CK, optimum treatment (N, P, K, Zn), N(P, K, Zn), P(N, K, Zn), K(N, P, Zn), +Mg(N, P, K, Zn, Mg), Zn (N,P,K), +2P(N, 2P, K, Zn), +2K(N, P, 2K, Zn), and 2N+2P+2K(2N, 2P, 2K, Zn) for field experiment to test the effect on tree height, diameter (DBH) growth, and dry weight of poplar. The results showed that there was no significant difference in tree heights between treatments with different fertilizers, diameter growth of poplar trees in treatments of lack of N and Zn was significantly slower than that of trees in optimum treatment, and dry weight of poplar dropped significantly for treatment of CK as well as treatments without application N and Zn. It is concluded that N and Zn were main limiting factor for poplar growth. Results from laboratory analysis and field experiment were uniform per-fectly, which proved that SNSA was reliable in evaluating soil nutrient status of poplar plantation.
基金supported by the Canadian International Development Agency (CIDA)
文摘A study was conducted to evaluate the status of soil nutrients under E. grandis plantation in comparison with that in its adjacent submontane rain forest. Twenty sequare plots, with an area of 20 m×20 m for each, were established in both of E.grandis plantation and its adjacent sub-montane rain forest, independently. Soil samples were collected from each square plot, at five points (at the four comers and at the center) of each plot. The collected soil samples were mixed to make a composite and representative sample for each plot, independently. The analyses were done in a soil laboratory following appropriate methods. The analysis result indicated that there were no significance differences between E. grandis plantation and its adjacent sub-montane rain forest in the level of major soil nutrients (total N, available P, exchangeable K, Ca and Mg), pH and total carbon of soils (p 〈 0.05). There were significance differences between two sites of forest soils in percentage of clay particles, and exchangeable Na content. E. grandis plantation was found improving soil nutrients and total carbon as compared with that of its adjacent submontane rain forest.
文摘Fire has been used to prepare land during tree plantation establishment for many years but uncertainty about how ecosystems respond to prescribed burning makes it difficult to predict the effects of fire on soil nutrients.The aim of this study was to determine the effect of burning accumulated forest residues(slash)on soil chemical properties and how trees respond.We analyzed 40 burned and unburned sites and compared growth of Eucalyptus grandis W.Hill ex Maiden between sites.Soil pH increased by 39%after fire,suggesting reduced soil acidity and increased liming.Total nitrogen increased by 100%;other nutrients(Ca^2+,Mg^2+and K^+)also increased.Increase in nutrients had a significant effect on the growth of E.grandis;larger and taller trees were associated more with burned than unburned sites.This study provides evidence that burning accumulated slash during land preparation prior to plantation establishment alters soil nutrient status and enhances the growth of E.grandis.
文摘The annual dynamic changes of soil nutrients were measured in pure larch plantation and in mixed larch plantation in the arboretum of Inner Mongolia Academy of Forestry Science, Huhehaote. The results showed that soil nutrients in pure larch plantations changed rapidly in July and August. The variation of soil nutrients is more stable in mixed larch plantation. Compared with the pure larch plantation, the content of soil nutrients in mixed larch plantation obviously increased. The soil degradation occurred in the pure larch plantation, and related to the forest age.
基金This study was supported by Chinese Academy of Science Program (KZCX2-YW-405)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘An investigation on soil organic carbon, total N and P, NO3-N, available P, microbial biomass C, N and P, basal respiration and metabolic quotients (qCO2) was conducted to compare differences in soil microbial properties and nutrients between 15-year-old pure Chinese fir (Cunninghamia lanceolata) and two mixed Chinese fir plantations (mixed plantations with Alnus crernastogyne, mixed plantations with Kalopanax septemlobus) at Huitong Experimental Station of Forest Ecology (26°45′N latitude and 109°30′E longitude), Chinese Academy of Sciences in May, 2005. Results showed that the concentrations of soil organic carbon, total N, NO3^--N, total P and available P in mixed plantations were higher than that in pure plantation. Soil microbial biomass N in two mixed plantations was averagely higher 69% and 61% than that in pure plantation at the 0-10 cm and 10-20 cm soil depth, respectively. Soil microbial biomass C, P and basal respiration in mixed plantations were higher 11%, 14% and 4% at the 0-10 cm soil depth and 6%, 3% and 3% at the 10-20 cm soil depth compared with pure plantation. However, soil microbial C: N ratio and qCO2 were averagely lower 34% and 4% in mixed plantations than pure plantation. Additionally, there was a closer relation between soil microbial biomass and soil nutrients than between basal respiration, microbial C: N ratio and qCO2 and soil nutrients. In conclusion, introduction of broad-leaved tree species into pure coniferous plantation improved soil microbial properties and soil fertility, and can be helpful to restore degraded forest soil.
基金This research was supported by National Natural Science Foundation of China (40173033) and Important Direction Project of Knowl-edge Innovation of Chinese Academy of Sciences (KZCX3-SW-423).
文摘In August 2003, we investigated spatial pattern in soil carbon and nutrients in the Alpine tundra of Changbai Moun-tain, Jilin Province, China. The analytical results showed that the soil C concentrations at different depths were significantly (p<0.05) higher in Meadow alpine tundra vegetation than that in other vegetation types; the soil C (including inorganic carbon) concentrations at layer below 10 cm are significantly (p<0.05) higher than at layer of 1020 cm among the different vegetation types; the spatial distribution of soil N concentration at top surface of 0-10 cm depth was similar to that at 1020 cm; the soil P concentrations at different depths were significantly (p<0.05) lower at Lithic alpine tundra vegetation than that at other vegetation types; soil K concentration was significantly (p<0.05) higher in Felsenmeer alpine tundra vegetation and Lithic alpine tundra vegetation than that in Typical alpine tundra, Meadow alpine tundra, and Swamp alpine tundra vegetations.. However, the soil K had not significant change at different soil depths of each vegetation type. Soil S concentration was dramatically higher in Meadow alpine tundra vegetation than that in other vegetation types. For each vegetation type, the ratios of C: N, C: P, C: K and C: S generally decreased with soil depth. The ratio of C: N was significantly higher at 010 cm than that at 1020 cm for all vegetation types except at the top layer of the Swamp alpine tundra vegetation. Our study showed that soil C and nutrients storage were significantly spatial heterogeneity.
基金supported by International Science&Technology Cooperation Program of China(2012DFB30030)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05050205)+3 种基金Natural Science Foundation of Hunan province(2015JJ6050)Hunan forestry science and technology program(XLK201417)Youth Innovation Fund of Hunan Academy of forestry(2013LQJ08)The Twelfth Five-Year Plan in national science and technology for the environment field(2012BAC09B03-4)
文摘To better understand the effects of forest suc- cession on soil microbial activity, a comparison of soil microbial properties and nutrients was conducted between three forest types representing a natural forest succession chronosequence. The study compared a pine (Pinus mas- soniana) forest (PF), a pine and broadleaf mixed forest (MF) and an evergreen broadleaf forest (BF), in the Yingzuijie Biosphere Reserve, Hunan Province, China. Results showed that soil nutrients in the MF and BF plots were higher than in the PF plots. The range in microbial biomass carbon followed a similar pattem with Be havingthe greatest values, 522-1022 mg kg-1, followed by Mr 368-569 mg kg-1, and finally, PF 193--449 mg kg-1. Soil nutrients were more strongly correlated with microbial biomass carbon than basal respiration or metabolic quo- tient. Overall, forest succession in the study site improved soil microbial properties and soil fertility, which in turn can increase primary productivity and carbon sequestration.
基金financially supported by the Programme of "Effects of Atmospheric Pollutants on Forest Ecosystems" from the Ministry of Agriculture and Foodthe Greek Ministry of Environmentthe European Commission
文摘The fluxes of masses and the nutrients Ca,Mg,K,N,P and S were determined in the litterfall of two adjacent forest ecosystems of Hungarian oak(Quercus frainetto L.)and European beech(Fagus sylvatica L.)in a mountainous area of northeastern Greece in 2010–2015.The foliar litterfall for both species reached about 70%of the total litterfall,and was significantly higher from the other two fractions(woody and rest litterfall).The fluxes of masses and nutrients were compared between ecosystems for each fraction separately.Only one significant statistical difference was found,that of K in the woody litterfall.In addition,the stocks of masses and nutrients were calculated in the forest floors and mineral soils of the two ecosystems.Likewise,the stocks of nutrients in the forest floors and mineral soils were compared between ecosystems.In the L horizon of the forest floors,statistical differences,as a result of species effect,were found for the stocks of Ca and N.In the FH horizons,the masses and all the nutrient stocks differed significantly,as the beech plot had much higher quantities of organic matter and nutrients.These higher quantities were probably due to low soil temperatures(microclimate)and high acidity in the beech plot(species effect)that slowed down decomposition.In the mineral soils,the propagation of random error derived from random errors of the individual soil layers was an important factor in the statistical comparisons.Because of the soil acidity in the beech plot,the stocks of exchangeable base cations were significantly higher in the oak plot,whereas the other nutrient stocks did not differ.
基金funded by the research and demonstration project of teak cultivation of the Chinese Ministry of Science and Technology(2012BAD21B01)
文摘Teak (Tectona grandis L.f.) is widely planted in the world due to its high market demand, economic, ecological and social value. Its plantations have mostly been established and expanded into sites that are acidic to severely acidic in southern China. But, there are no available and specific evidence-based nutrient management techniques. To better recognize and understand the relationship between teak tree growth and nutrient content in the foliage and soil and establish nutrient norms are critical to optimally manage these young plantations. We studied the foliar nutrient and soil chemistry in 19 representative teak plantations aged 5-8 years. Regression analysis indicated that the mean annual increment of teak volume was linearly and positively correlated with foliar N, Ca, Fe and B concentrations, with soil base saturation percentage, available P and Zn concentrations, and negatively correlated with soil Al concentration. Only if the Ca and Mg contents in soil were enhanced, could the increase in soil base saturation percentage benefit teak growth. A revised classification of low-and high-yielding stands was established by using a sorting method of principal components over 6 foliar macro and 8 micro elements in a Diagnosis and Recommendation Integrated System (DRIS). Specific DRIS norms for teak plantations in acid soils were derived. The nutrient balance of N, P, K Ca, Mg, Zn, B with Fe or A1, Ca with Mg, and Fe with AI provided a key to promote the growth of teak in acid soils. Meanwhile, soil Zn was also found as a primary trace element that affected teak growth in this study.
基金supported by the Agricultural Science and Technology Independent Innovation Funds of Jiangsu Province(CX(16)1005)the National Key Research and Development Program of China(2017YFD0600700)
文摘The response of soil fauna to the litter decomposition process has received considerable attention,but this effect has not been fully examined in agroforestry systems.A 1-year in situ decomposition experiment was carried out in a pure ginkgo plantation and two ginkgo agroforestry systems using a litterbag method(11 different treatments were tested in three systems).We found that the application of different organic materials(crop residues)produced positive effects on the number of soil fauna in the ginkgo planting systems;the mixture of ginkgo leaves and corn leaves was the best performing treatment.Collembola and Acarina were the predominant groups in the litter bags and were mainly responsible for the differences among the treatments.Litter mixing promoted the abundance,richness,and diversity of soil fauna,and significant differences regarding the Shannon–Wiener index of the soil fauna were observed among the 11 treatments in July.Significantly higher soil MBC(microbial biomass carbon)and MBN(microbial biomass nitrogen)were observed in agroforestry systems than in pure ginkgo plantations.These results suggest that the practice of intercrop residue application plays an important role in enhancing soil ecosystem function in ginkgo agroforestry systems and may ultimately contribute to sustainable intercrop production,soil fertility,and local economic diversity.
基金supported by National Natural Science Foundation of China (No.30471386)Japanese Society for Promotion of Sciences (15P03118)
文摘Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 5400 stems-ha^-1 ( -〉 3.0 cm DBH); 64% of those stems were smaller than 10 cm DBH. The total basal area was 54.4 m^2-ha^-1, of which Castanopsis sieboldii contributed 48%. The forest showed high species diversity of trees. 80 tree species (≥ 3.0 cm DBH) from 31 families was identified in the thirty sampling plots. C. sieboldii and Schima wallichii were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were, 3.36 for Diversity index (H'), 0.71 for Equitability index (J') and 4.72 for Species richness index (S'), all of which strongly declined with the increase of importance value of the dominant, C. sieboldii. Measures of soil nutrients indicated low fertility, extreme heterogeneity and possible A1 toxicity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil exchangeable K^+, Ca^2+, and Ca^2+/Al^3- ratio (all p values 〈0.001) and a negative relationship with N, C and P. The results suggest that soil property is a major factor influencing forest composition and structure within the subtropical forest in Okinawa.